Step |
Hyp |
Ref |
Expression |
1 |
|
bnj207.1 |
⊢ ( 𝜒 ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
2 |
|
bnj207.2 |
⊢ ( 𝜑′ ↔ [ 𝑀 / 𝑛 ] 𝜑 ) |
3 |
|
bnj207.3 |
⊢ ( 𝜓′ ↔ [ 𝑀 / 𝑛 ] 𝜓 ) |
4 |
|
bnj207.4 |
⊢ ( 𝜒′ ↔ [ 𝑀 / 𝑛 ] 𝜒 ) |
5 |
|
bnj207.5 |
⊢ 𝑀 ∈ V |
6 |
1
|
sbcbii |
⊢ ( [ 𝑀 / 𝑛 ] 𝜒 ↔ [ 𝑀 / 𝑛 ] ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
7 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) |
8 |
7
|
sbc19.21g |
⊢ ( 𝑀 ∈ V → ( [ 𝑀 / 𝑛 ] ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → [ 𝑀 / 𝑛 ] ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) ) |
9 |
5 8
|
ax-mp |
⊢ ( [ 𝑀 / 𝑛 ] ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → [ 𝑀 / 𝑛 ] ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
10 |
5
|
bnj89 |
⊢ ( [ 𝑀 / 𝑛 ] ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ↔ ∃! 𝑓 [ 𝑀 / 𝑛 ] ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
11 |
5
|
bnj90 |
⊢ ( [ 𝑀 / 𝑛 ] 𝑓 Fn 𝑛 ↔ 𝑓 Fn 𝑀 ) |
12 |
11
|
bicomi |
⊢ ( 𝑓 Fn 𝑀 ↔ [ 𝑀 / 𝑛 ] 𝑓 Fn 𝑛 ) |
13 |
12 2 3 5
|
bnj206 |
⊢ ( [ 𝑀 / 𝑛 ] ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ↔ ( 𝑓 Fn 𝑀 ∧ 𝜑′ ∧ 𝜓′ ) ) |
14 |
13
|
eubii |
⊢ ( ∃! 𝑓 [ 𝑀 / 𝑛 ] ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ↔ ∃! 𝑓 ( 𝑓 Fn 𝑀 ∧ 𝜑′ ∧ 𝜓′ ) ) |
15 |
10 14
|
bitri |
⊢ ( [ 𝑀 / 𝑛 ] ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ↔ ∃! 𝑓 ( 𝑓 Fn 𝑀 ∧ 𝜑′ ∧ 𝜓′ ) ) |
16 |
15
|
imbi2i |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → [ 𝑀 / 𝑛 ] ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑀 ∧ 𝜑′ ∧ 𝜓′ ) ) ) |
17 |
9 16
|
bitri |
⊢ ( [ 𝑀 / 𝑛 ] ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑀 ∧ 𝜑′ ∧ 𝜓′ ) ) ) |
18 |
6 17
|
bitri |
⊢ ( [ 𝑀 / 𝑛 ] 𝜒 ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑀 ∧ 𝜑′ ∧ 𝜓′ ) ) ) |
19 |
4 18
|
bitri |
⊢ ( 𝜒′ ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑀 ∧ 𝜑′ ∧ 𝜓′ ) ) ) |