Metamath Proof Explorer


Theorem bnj207

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj207.1 ( 𝜒 ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
bnj207.2 ( 𝜑′[ 𝑀 / 𝑛 ] 𝜑 )
bnj207.3 ( 𝜓′[ 𝑀 / 𝑛 ] 𝜓 )
bnj207.4 ( 𝜒′[ 𝑀 / 𝑛 ] 𝜒 )
bnj207.5 𝑀 ∈ V
Assertion bnj207 ( 𝜒′ ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑀𝜑′𝜓′ ) ) )

Proof

Step Hyp Ref Expression
1 bnj207.1 ( 𝜒 ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
2 bnj207.2 ( 𝜑′[ 𝑀 / 𝑛 ] 𝜑 )
3 bnj207.3 ( 𝜓′[ 𝑀 / 𝑛 ] 𝜓 )
4 bnj207.4 ( 𝜒′[ 𝑀 / 𝑛 ] 𝜒 )
5 bnj207.5 𝑀 ∈ V
6 1 sbcbii ( [ 𝑀 / 𝑛 ] 𝜒[ 𝑀 / 𝑛 ] ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
7 nfv 𝑛 ( 𝑅 FrSe 𝐴𝑥𝐴 )
8 7 sbc19.21g ( 𝑀 ∈ V → ( [ 𝑀 / 𝑛 ] ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → [ 𝑀 / 𝑛 ] ∃! 𝑓 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ) )
9 5 8 ax-mp ( [ 𝑀 / 𝑛 ] ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → [ 𝑀 / 𝑛 ] ∃! 𝑓 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
10 5 bnj89 ( [ 𝑀 / 𝑛 ] ∃! 𝑓 ( 𝑓 Fn 𝑛𝜑𝜓 ) ↔ ∃! 𝑓 [ 𝑀 / 𝑛 ] ( 𝑓 Fn 𝑛𝜑𝜓 ) )
11 5 bnj90 ( [ 𝑀 / 𝑛 ] 𝑓 Fn 𝑛𝑓 Fn 𝑀 )
12 11 bicomi ( 𝑓 Fn 𝑀[ 𝑀 / 𝑛 ] 𝑓 Fn 𝑛 )
13 12 2 3 5 bnj206 ( [ 𝑀 / 𝑛 ] ( 𝑓 Fn 𝑛𝜑𝜓 ) ↔ ( 𝑓 Fn 𝑀𝜑′𝜓′ ) )
14 13 eubii ( ∃! 𝑓 [ 𝑀 / 𝑛 ] ( 𝑓 Fn 𝑛𝜑𝜓 ) ↔ ∃! 𝑓 ( 𝑓 Fn 𝑀𝜑′𝜓′ ) )
15 10 14 bitri ( [ 𝑀 / 𝑛 ] ∃! 𝑓 ( 𝑓 Fn 𝑛𝜑𝜓 ) ↔ ∃! 𝑓 ( 𝑓 Fn 𝑀𝜑′𝜓′ ) )
16 15 imbi2i ( ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → [ 𝑀 / 𝑛 ] ∃! 𝑓 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑀𝜑′𝜓′ ) ) )
17 9 16 bitri ( [ 𝑀 / 𝑛 ] ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑀𝜑′𝜓′ ) ) )
18 6 17 bitri ( [ 𝑀 / 𝑛 ] 𝜒 ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑀𝜑′𝜓′ ) ) )
19 4 18 bitri ( 𝜒′ ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑀𝜑′𝜓′ ) ) )