Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bnj213 | ⊢ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bnj14 | ⊢ pred ( 𝑋 , 𝐴 , 𝑅 ) = { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } | |
2 | 1 | ssrab3 | ⊢ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐴 |