| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj222.1 | 
							⊢ ( 𝜓  ↔  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑁  →  ( 𝐹 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝐹 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							suceq | 
							⊢ ( 𝑖  =  𝑚  →  suc  𝑖  =  suc  𝑚 )  | 
						
						
							| 3 | 
							
								2
							 | 
							eleq1d | 
							⊢ ( 𝑖  =  𝑚  →  ( suc  𝑖  ∈  𝑁  ↔  suc  𝑚  ∈  𝑁 ) )  | 
						
						
							| 4 | 
							
								2
							 | 
							fveq2d | 
							⊢ ( 𝑖  =  𝑚  →  ( 𝐹 ‘ suc  𝑖 )  =  ( 𝐹 ‘ suc  𝑚 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑖  =  𝑚  →  ( 𝐹 ‘ 𝑖 )  =  ( 𝐹 ‘ 𝑚 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							bnj1113 | 
							⊢ ( 𝑖  =  𝑚  →  ∪  𝑦  ∈  ( 𝐹 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  =  ∪  𝑦  ∈  ( 𝐹 ‘ 𝑚 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							eqeq12d | 
							⊢ ( 𝑖  =  𝑚  →  ( ( 𝐹 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝐹 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  ↔  ( 𝐹 ‘ suc  𝑚 )  =  ∪  𝑦  ∈  ( 𝐹 ‘ 𝑚 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 8 | 
							
								3 7
							 | 
							imbi12d | 
							⊢ ( 𝑖  =  𝑚  →  ( ( suc  𝑖  ∈  𝑁  →  ( 𝐹 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝐹 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  ↔  ( suc  𝑚  ∈  𝑁  →  ( 𝐹 ‘ suc  𝑚 )  =  ∪  𝑦  ∈  ( 𝐹 ‘ 𝑚 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							cbvralvw | 
							⊢ ( ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑁  →  ( 𝐹 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝐹 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  ↔  ∀ 𝑚  ∈  ω ( suc  𝑚  ∈  𝑁  →  ( 𝐹 ‘ suc  𝑚 )  =  ∪  𝑦  ∈  ( 𝐹 ‘ 𝑚 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 10 | 
							
								1 9
							 | 
							bitri | 
							⊢ ( 𝜓  ↔  ∀ 𝑚  ∈  ω ( suc  𝑚  ∈  𝑁  →  ( 𝐹 ‘ suc  𝑚 )  =  ∪  𝑦  ∈  ( 𝐹 ‘ 𝑚 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  |