Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bnj226.1 | ⊢ 𝐵 ⊆ 𝐶 | |
Assertion | bnj226 | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj226.1 | ⊢ 𝐵 ⊆ 𝐶 | |
2 | 1 | rgenw | ⊢ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 |
3 | iunss | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) | |
4 | 2 3 | mpbir | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 |