Metamath Proof Explorer


Theorem bnj226

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj226.1 𝐵𝐶
Assertion bnj226 𝑥𝐴 𝐵𝐶

Proof

Step Hyp Ref Expression
1 bnj226.1 𝐵𝐶
2 1 rgenw 𝑥𝐴 𝐵𝐶
3 iunss ( 𝑥𝐴 𝐵𝐶 ↔ ∀ 𝑥𝐴 𝐵𝐶 )
4 2 3 mpbir 𝑥𝐴 𝐵𝐶