| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj229.1 | 
							⊢ ( 𝜓  ↔  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑁  →  ( 𝐹 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝐹 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj213 | 
							⊢  pred ( 𝑦 ,  𝐴 ,  𝑅 )  ⊆  𝐴  | 
						
						
							| 3 | 
							
								2
							 | 
							bnj226 | 
							⊢ ∪  𝑦  ∈  ( 𝐹 ‘ 𝑚 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  ⊆  𝐴  | 
						
						
							| 4 | 
							
								1
							 | 
							bnj222 | 
							⊢ ( 𝜓  ↔  ∀ 𝑚  ∈  ω ( suc  𝑚  ∈  𝑁  →  ( 𝐹 ‘ suc  𝑚 )  =  ∪  𝑦  ∈  ( 𝐹 ‘ 𝑚 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							bnj228 | 
							⊢ ( ( 𝑚  ∈  ω  ∧  𝜓 )  →  ( suc  𝑚  ∈  𝑁  →  ( 𝐹 ‘ suc  𝑚 )  =  ∪  𝑦  ∈  ( 𝐹 ‘ 𝑚 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							adantl | 
							⊢ ( ( suc  𝑚  =  𝑛  ∧  ( 𝑚  ∈  ω  ∧  𝜓 ) )  →  ( suc  𝑚  ∈  𝑁  →  ( 𝐹 ‘ suc  𝑚 )  =  ∪  𝑦  ∈  ( 𝐹 ‘ 𝑚 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							eleq1 | 
							⊢ ( suc  𝑚  =  𝑛  →  ( suc  𝑚  ∈  𝑁  ↔  𝑛  ∈  𝑁 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							fveqeq2 | 
							⊢ ( suc  𝑚  =  𝑛  →  ( ( 𝐹 ‘ suc  𝑚 )  =  ∪  𝑦  ∈  ( 𝐹 ‘ 𝑚 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  ↔  ( 𝐹 ‘ 𝑛 )  =  ∪  𝑦  ∈  ( 𝐹 ‘ 𝑚 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							imbi12d | 
							⊢ ( suc  𝑚  =  𝑛  →  ( ( suc  𝑚  ∈  𝑁  →  ( 𝐹 ‘ suc  𝑚 )  =  ∪  𝑦  ∈  ( 𝐹 ‘ 𝑚 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  ↔  ( 𝑛  ∈  𝑁  →  ( 𝐹 ‘ 𝑛 )  =  ∪  𝑦  ∈  ( 𝐹 ‘ 𝑚 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantr | 
							⊢ ( ( suc  𝑚  =  𝑛  ∧  ( 𝑚  ∈  ω  ∧  𝜓 ) )  →  ( ( suc  𝑚  ∈  𝑁  →  ( 𝐹 ‘ suc  𝑚 )  =  ∪  𝑦  ∈  ( 𝐹 ‘ 𝑚 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  ↔  ( 𝑛  ∈  𝑁  →  ( 𝐹 ‘ 𝑛 )  =  ∪  𝑦  ∈  ( 𝐹 ‘ 𝑚 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) )  | 
						
						
							| 11 | 
							
								6 10
							 | 
							mpbid | 
							⊢ ( ( suc  𝑚  =  𝑛  ∧  ( 𝑚  ∈  ω  ∧  𝜓 ) )  →  ( 𝑛  ∈  𝑁  →  ( 𝐹 ‘ 𝑛 )  =  ∪  𝑦  ∈  ( 𝐹 ‘ 𝑚 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							3impb | 
							⊢ ( ( suc  𝑚  =  𝑛  ∧  𝑚  ∈  ω  ∧  𝜓 )  →  ( 𝑛  ∈  𝑁  →  ( 𝐹 ‘ 𝑛 )  =  ∪  𝑦  ∈  ( 𝐹 ‘ 𝑚 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							impcom | 
							⊢ ( ( 𝑛  ∈  𝑁  ∧  ( suc  𝑚  =  𝑛  ∧  𝑚  ∈  ω  ∧  𝜓 ) )  →  ( 𝐹 ‘ 𝑛 )  =  ∪  𝑦  ∈  ( 𝐹 ‘ 𝑚 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 14 | 
							
								3 13
							 | 
							bnj1262 | 
							⊢ ( ( 𝑛  ∈  𝑁  ∧  ( suc  𝑚  =  𝑛  ∧  𝑚  ∈  ω  ∧  𝜓 ) )  →  ( 𝐹 ‘ 𝑛 )  ⊆  𝐴 )  |