Metamath Proof Explorer


Theorem bnj240

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj240.1 ( 𝜓𝜓′ )
bnj240.2 ( 𝜒𝜒′ )
Assertion bnj240 ( ( 𝜑𝜓𝜒 ) → ( 𝜓′𝜒′ ) )

Proof

Step Hyp Ref Expression
1 bnj240.1 ( 𝜓𝜓′ )
2 bnj240.2 ( 𝜒𝜒′ )
3 1 3ad2ant1 ( ( 𝜓𝜒𝜑 ) → 𝜓′ )
4 2 3ad2ant2 ( ( 𝜓𝜒𝜑 ) → 𝜒′ )
5 3 4 jca ( ( 𝜓𝜒𝜑 ) → ( 𝜓′𝜒′ ) )
6 5 3comr ( ( 𝜑𝜓𝜒 ) → ( 𝜓′𝜒′ ) )