Metamath Proof Explorer


Theorem bnj250

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj250 ( ( 𝜑𝜓𝜒𝜃 ) ↔ ( 𝜑 ∧ ( ( 𝜓𝜒 ) ∧ 𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 df-bnj17 ( ( 𝜑𝜓𝜒𝜃 ) ↔ ( ( 𝜑𝜓𝜒 ) ∧ 𝜃 ) )
2 3anass ( ( 𝜑𝜓𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓𝜒 ) ) )
3 2 anbi1i ( ( ( 𝜑𝜓𝜒 ) ∧ 𝜃 ) ↔ ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) ∧ 𝜃 ) )
4 anass ( ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) ∧ 𝜃 ) ↔ ( 𝜑 ∧ ( ( 𝜓𝜒 ) ∧ 𝜃 ) ) )
5 1 3 4 3bitri ( ( 𝜑𝜓𝜒𝜃 ) ↔ ( 𝜑 ∧ ( ( 𝜓𝜒 ) ∧ 𝜃 ) ) )