Metamath Proof Explorer


Theorem bnj251

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj251 ( ( 𝜑𝜓𝜒𝜃 ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ ( 𝜒𝜃 ) ) ) )

Proof

Step Hyp Ref Expression
1 bnj250 ( ( 𝜑𝜓𝜒𝜃 ) ↔ ( 𝜑 ∧ ( ( 𝜓𝜒 ) ∧ 𝜃 ) ) )
2 anass ( ( ( 𝜓𝜒 ) ∧ 𝜃 ) ↔ ( 𝜓 ∧ ( 𝜒𝜃 ) ) )
3 2 anbi2i ( ( 𝜑 ∧ ( ( 𝜓𝜒 ) ∧ 𝜃 ) ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ ( 𝜒𝜃 ) ) ) )
4 1 3 bitri ( ( 𝜑𝜓𝜒𝜃 ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ ( 𝜒𝜃 ) ) ) )