Metamath Proof Explorer


Theorem bnj257

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj257 ( ( 𝜑𝜓𝜒𝜃 ) ↔ ( 𝜑𝜓𝜃𝜒 ) )

Proof

Step Hyp Ref Expression
1 ancom ( ( 𝜒𝜃 ) ↔ ( 𝜃𝜒 ) )
2 1 anbi2i ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜃𝜒 ) ) )
3 bnj256 ( ( 𝜑𝜓𝜒𝜃 ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) )
4 bnj256 ( ( 𝜑𝜓𝜃𝜒 ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜃𝜒 ) ) )
5 2 3 4 3bitr4i ( ( 𝜑𝜓𝜒𝜃 ) ↔ ( 𝜑𝜓𝜃𝜒 ) )