Metamath Proof Explorer


Theorem bnj268

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj268 ( ( 𝜑𝜓𝜒𝜃 ) ↔ ( 𝜑𝜒𝜓𝜃 ) )

Proof

Step Hyp Ref Expression
1 3ancomb ( ( 𝜑𝜓𝜒 ) ↔ ( 𝜑𝜒𝜓 ) )
2 1 anbi1i ( ( ( 𝜑𝜓𝜒 ) ∧ 𝜃 ) ↔ ( ( 𝜑𝜒𝜓 ) ∧ 𝜃 ) )
3 df-bnj17 ( ( 𝜑𝜓𝜒𝜃 ) ↔ ( ( 𝜑𝜓𝜒 ) ∧ 𝜃 ) )
4 df-bnj17 ( ( 𝜑𝜒𝜓𝜃 ) ↔ ( ( 𝜑𝜒𝜓 ) ∧ 𝜃 ) )
5 2 3 4 3bitr4i ( ( 𝜑𝜓𝜒𝜃 ) ↔ ( 𝜑𝜒𝜓𝜃 ) )