Metamath Proof Explorer


Theorem bnj334

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (Proof shortened by Andrew Salmon, 14-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj334 ( ( 𝜑𝜓𝜒𝜃 ) ↔ ( 𝜒𝜑𝜓𝜃 ) )

Proof

Step Hyp Ref Expression
1 bnj290 ( ( 𝜑𝜓𝜒𝜃 ) ↔ ( 𝜑𝜒𝜃𝜓 ) )
2 bnj257 ( ( 𝜑𝜒𝜃𝜓 ) ↔ ( 𝜑𝜒𝜓𝜃 ) )
3 bnj312 ( ( 𝜑𝜒𝜓𝜃 ) ↔ ( 𝜒𝜑𝜓𝜃 ) )
4 1 2 3 3bitri ( ( 𝜑𝜓𝜒𝜃 ) ↔ ( 𝜒𝜑𝜓𝜃 ) )