Step |
Hyp |
Ref |
Expression |
1 |
|
bnj517.1 |
⊢ ( 𝜑 ↔ ( 𝐹 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj517.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
3 |
|
fveq2 |
⊢ ( 𝑚 = ∅ → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ ∅ ) ) |
4 |
|
simpl2 |
⊢ ( ( ( 𝑁 ∈ ω ∧ 𝜑 ∧ 𝜓 ) ∧ 𝑚 ∈ 𝑁 ) → 𝜑 ) |
5 |
4 1
|
sylib |
⊢ ( ( ( 𝑁 ∈ ω ∧ 𝜑 ∧ 𝜓 ) ∧ 𝑚 ∈ 𝑁 ) → ( 𝐹 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
6 |
3 5
|
sylan9eqr |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ 𝜑 ∧ 𝜓 ) ∧ 𝑚 ∈ 𝑁 ) ∧ 𝑚 = ∅ ) → ( 𝐹 ‘ 𝑚 ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
7 |
|
bnj213 |
⊢ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐴 |
8 |
6 7
|
eqsstrdi |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ 𝜑 ∧ 𝜓 ) ∧ 𝑚 ∈ 𝑁 ) ∧ 𝑚 = ∅ ) → ( 𝐹 ‘ 𝑚 ) ⊆ 𝐴 ) |
9 |
|
r19.29r |
⊢ ( ( ∃ 𝑖 ∈ ω 𝑚 = suc 𝑖 ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) → ∃ 𝑖 ∈ ω ( 𝑚 = suc 𝑖 ∧ ( suc 𝑖 ∈ 𝑁 → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
10 |
|
eleq1 |
⊢ ( 𝑚 = suc 𝑖 → ( 𝑚 ∈ 𝑁 ↔ suc 𝑖 ∈ 𝑁 ) ) |
11 |
10
|
biimpd |
⊢ ( 𝑚 = suc 𝑖 → ( 𝑚 ∈ 𝑁 → suc 𝑖 ∈ 𝑁 ) ) |
12 |
|
fveqeq2 |
⊢ ( 𝑚 = suc 𝑖 → ( ( 𝐹 ‘ 𝑚 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
13 |
|
bnj213 |
⊢ pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐴 |
14 |
13
|
rgenw |
⊢ ∀ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐴 |
15 |
|
iunss |
⊢ ( ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐴 ↔ ∀ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐴 ) |
16 |
14 15
|
mpbir |
⊢ ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐴 |
17 |
|
sseq1 |
⊢ ( ( 𝐹 ‘ 𝑚 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) → ( ( 𝐹 ‘ 𝑚 ) ⊆ 𝐴 ↔ ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐴 ) ) |
18 |
16 17
|
mpbiri |
⊢ ( ( 𝐹 ‘ 𝑚 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) → ( 𝐹 ‘ 𝑚 ) ⊆ 𝐴 ) |
19 |
12 18
|
syl6bir |
⊢ ( 𝑚 = suc 𝑖 → ( ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) → ( 𝐹 ‘ 𝑚 ) ⊆ 𝐴 ) ) |
20 |
11 19
|
imim12d |
⊢ ( 𝑚 = suc 𝑖 → ( ( suc 𝑖 ∈ 𝑁 → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) → ( 𝑚 ∈ 𝑁 → ( 𝐹 ‘ 𝑚 ) ⊆ 𝐴 ) ) ) |
21 |
20
|
imp |
⊢ ( ( 𝑚 = suc 𝑖 ∧ ( suc 𝑖 ∈ 𝑁 → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) → ( 𝑚 ∈ 𝑁 → ( 𝐹 ‘ 𝑚 ) ⊆ 𝐴 ) ) |
22 |
21
|
rexlimivw |
⊢ ( ∃ 𝑖 ∈ ω ( 𝑚 = suc 𝑖 ∧ ( suc 𝑖 ∈ 𝑁 → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) → ( 𝑚 ∈ 𝑁 → ( 𝐹 ‘ 𝑚 ) ⊆ 𝐴 ) ) |
23 |
9 22
|
syl |
⊢ ( ( ∃ 𝑖 ∈ ω 𝑚 = suc 𝑖 ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) → ( 𝑚 ∈ 𝑁 → ( 𝐹 ‘ 𝑚 ) ⊆ 𝐴 ) ) |
24 |
23
|
ex |
⊢ ( ∃ 𝑖 ∈ ω 𝑚 = suc 𝑖 → ( ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) → ( 𝑚 ∈ 𝑁 → ( 𝐹 ‘ 𝑚 ) ⊆ 𝐴 ) ) ) |
25 |
24
|
com3l |
⊢ ( ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) → ( 𝑚 ∈ 𝑁 → ( ∃ 𝑖 ∈ ω 𝑚 = suc 𝑖 → ( 𝐹 ‘ 𝑚 ) ⊆ 𝐴 ) ) ) |
26 |
2 25
|
sylbi |
⊢ ( 𝜓 → ( 𝑚 ∈ 𝑁 → ( ∃ 𝑖 ∈ ω 𝑚 = suc 𝑖 → ( 𝐹 ‘ 𝑚 ) ⊆ 𝐴 ) ) ) |
27 |
26
|
3ad2ant3 |
⊢ ( ( 𝑁 ∈ ω ∧ 𝜑 ∧ 𝜓 ) → ( 𝑚 ∈ 𝑁 → ( ∃ 𝑖 ∈ ω 𝑚 = suc 𝑖 → ( 𝐹 ‘ 𝑚 ) ⊆ 𝐴 ) ) ) |
28 |
27
|
imp31 |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ 𝜑 ∧ 𝜓 ) ∧ 𝑚 ∈ 𝑁 ) ∧ ∃ 𝑖 ∈ ω 𝑚 = suc 𝑖 ) → ( 𝐹 ‘ 𝑚 ) ⊆ 𝐴 ) |
29 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ω ∧ 𝜑 ∧ 𝜓 ) ∧ 𝑚 ∈ 𝑁 ) → 𝑚 ∈ 𝑁 ) |
30 |
|
simpl1 |
⊢ ( ( ( 𝑁 ∈ ω ∧ 𝜑 ∧ 𝜓 ) ∧ 𝑚 ∈ 𝑁 ) → 𝑁 ∈ ω ) |
31 |
|
elnn |
⊢ ( ( 𝑚 ∈ 𝑁 ∧ 𝑁 ∈ ω ) → 𝑚 ∈ ω ) |
32 |
29 30 31
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ω ∧ 𝜑 ∧ 𝜓 ) ∧ 𝑚 ∈ 𝑁 ) → 𝑚 ∈ ω ) |
33 |
|
nn0suc |
⊢ ( 𝑚 ∈ ω → ( 𝑚 = ∅ ∨ ∃ 𝑖 ∈ ω 𝑚 = suc 𝑖 ) ) |
34 |
32 33
|
syl |
⊢ ( ( ( 𝑁 ∈ ω ∧ 𝜑 ∧ 𝜓 ) ∧ 𝑚 ∈ 𝑁 ) → ( 𝑚 = ∅ ∨ ∃ 𝑖 ∈ ω 𝑚 = suc 𝑖 ) ) |
35 |
8 28 34
|
mpjaodan |
⊢ ( ( ( 𝑁 ∈ ω ∧ 𝜑 ∧ 𝜓 ) ∧ 𝑚 ∈ 𝑁 ) → ( 𝐹 ‘ 𝑚 ) ⊆ 𝐴 ) |
36 |
35
|
ralrimiva |
⊢ ( ( 𝑁 ∈ ω ∧ 𝜑 ∧ 𝜓 ) → ∀ 𝑚 ∈ 𝑁 ( 𝐹 ‘ 𝑚 ) ⊆ 𝐴 ) |
37 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑛 ) ) |
38 |
37
|
sseq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐹 ‘ 𝑚 ) ⊆ 𝐴 ↔ ( 𝐹 ‘ 𝑛 ) ⊆ 𝐴 ) ) |
39 |
38
|
cbvralvw |
⊢ ( ∀ 𝑚 ∈ 𝑁 ( 𝐹 ‘ 𝑚 ) ⊆ 𝐴 ↔ ∀ 𝑛 ∈ 𝑁 ( 𝐹 ‘ 𝑛 ) ⊆ 𝐴 ) |
40 |
36 39
|
sylib |
⊢ ( ( 𝑁 ∈ ω ∧ 𝜑 ∧ 𝜓 ) → ∀ 𝑛 ∈ 𝑁 ( 𝐹 ‘ 𝑛 ) ⊆ 𝐴 ) |