Metamath Proof Explorer


Theorem bnj518

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj518.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
bnj518.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj518.3 ( 𝜏 ↔ ( 𝜑𝜓𝑛 ∈ ω ∧ 𝑝𝑛 ) )
Assertion bnj518 ( ( 𝑅 FrSe 𝐴𝜏 ) → ∀ 𝑦 ∈ ( 𝑓𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ∈ V )

Proof

Step Hyp Ref Expression
1 bnj518.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
2 bnj518.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
3 bnj518.3 ( 𝜏 ↔ ( 𝜑𝜓𝑛 ∈ ω ∧ 𝑝𝑛 ) )
4 bnj334 ( ( 𝜑𝜓𝑛 ∈ ω ∧ 𝑝𝑛 ) ↔ ( 𝑛 ∈ ω ∧ 𝜑𝜓𝑝𝑛 ) )
5 3 4 bitri ( 𝜏 ↔ ( 𝑛 ∈ ω ∧ 𝜑𝜓𝑝𝑛 ) )
6 df-bnj17 ( ( 𝑛 ∈ ω ∧ 𝜑𝜓𝑝𝑛 ) ↔ ( ( 𝑛 ∈ ω ∧ 𝜑𝜓 ) ∧ 𝑝𝑛 ) )
7 1 2 bnj517 ( ( 𝑛 ∈ ω ∧ 𝜑𝜓 ) → ∀ 𝑝𝑛 ( 𝑓𝑝 ) ⊆ 𝐴 )
8 7 r19.21bi ( ( ( 𝑛 ∈ ω ∧ 𝜑𝜓 ) ∧ 𝑝𝑛 ) → ( 𝑓𝑝 ) ⊆ 𝐴 )
9 6 8 sylbi ( ( 𝑛 ∈ ω ∧ 𝜑𝜓𝑝𝑛 ) → ( 𝑓𝑝 ) ⊆ 𝐴 )
10 5 9 sylbi ( 𝜏 → ( 𝑓𝑝 ) ⊆ 𝐴 )
11 ssel ( ( 𝑓𝑝 ) ⊆ 𝐴 → ( 𝑦 ∈ ( 𝑓𝑝 ) → 𝑦𝐴 ) )
12 bnj93 ( ( 𝑅 FrSe 𝐴𝑦𝐴 ) → pred ( 𝑦 , 𝐴 , 𝑅 ) ∈ V )
13 12 ex ( 𝑅 FrSe 𝐴 → ( 𝑦𝐴 → pred ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) )
14 11 13 sylan9r ( ( 𝑅 FrSe 𝐴 ∧ ( 𝑓𝑝 ) ⊆ 𝐴 ) → ( 𝑦 ∈ ( 𝑓𝑝 ) → pred ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) )
15 14 ralrimiv ( ( 𝑅 FrSe 𝐴 ∧ ( 𝑓𝑝 ) ⊆ 𝐴 ) → ∀ 𝑦 ∈ ( 𝑓𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ∈ V )
16 10 15 sylan2 ( ( 𝑅 FrSe 𝐴𝜏 ) → ∀ 𝑦 ∈ ( 𝑓𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ∈ V )