Step |
Hyp |
Ref |
Expression |
1 |
|
bnj518.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj518.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
3 |
|
bnj518.3 |
⊢ ( 𝜏 ↔ ( 𝜑 ∧ 𝜓 ∧ 𝑛 ∈ ω ∧ 𝑝 ∈ 𝑛 ) ) |
4 |
|
bnj334 |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝑛 ∈ ω ∧ 𝑝 ∈ 𝑛 ) ↔ ( 𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓 ∧ 𝑝 ∈ 𝑛 ) ) |
5 |
3 4
|
bitri |
⊢ ( 𝜏 ↔ ( 𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓 ∧ 𝑝 ∈ 𝑛 ) ) |
6 |
|
df-bnj17 |
⊢ ( ( 𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓 ∧ 𝑝 ∈ 𝑛 ) ↔ ( ( 𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓 ) ∧ 𝑝 ∈ 𝑛 ) ) |
7 |
1 2
|
bnj517 |
⊢ ( ( 𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓 ) → ∀ 𝑝 ∈ 𝑛 ( 𝑓 ‘ 𝑝 ) ⊆ 𝐴 ) |
8 |
7
|
r19.21bi |
⊢ ( ( ( 𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓 ) ∧ 𝑝 ∈ 𝑛 ) → ( 𝑓 ‘ 𝑝 ) ⊆ 𝐴 ) |
9 |
6 8
|
sylbi |
⊢ ( ( 𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓 ∧ 𝑝 ∈ 𝑛 ) → ( 𝑓 ‘ 𝑝 ) ⊆ 𝐴 ) |
10 |
5 9
|
sylbi |
⊢ ( 𝜏 → ( 𝑓 ‘ 𝑝 ) ⊆ 𝐴 ) |
11 |
|
ssel |
⊢ ( ( 𝑓 ‘ 𝑝 ) ⊆ 𝐴 → ( 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) → 𝑦 ∈ 𝐴 ) ) |
12 |
|
bnj93 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑦 ∈ 𝐴 ) → pred ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) |
13 |
12
|
ex |
⊢ ( 𝑅 FrSe 𝐴 → ( 𝑦 ∈ 𝐴 → pred ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) ) |
14 |
11 13
|
sylan9r |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ ( 𝑓 ‘ 𝑝 ) ⊆ 𝐴 ) → ( 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) → pred ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) ) |
15 |
14
|
ralrimiv |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ ( 𝑓 ‘ 𝑝 ) ⊆ 𝐴 ) → ∀ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) |
16 |
10 15
|
sylan2 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ) → ∀ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) |