Metamath Proof Explorer


Theorem bnj521

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj521 ( 𝐴 ∩ { 𝐴 } ) = ∅

Proof

Step Hyp Ref Expression
1 elirr ¬ 𝐴𝐴
2 elin ( 𝑥 ∈ ( 𝐴 ∩ { 𝐴 } ) ↔ ( 𝑥𝐴𝑥 ∈ { 𝐴 } ) )
3 velsn ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 )
4 eleq1 ( 𝑥 = 𝐴 → ( 𝑥𝐴𝐴𝐴 ) )
5 4 biimpac ( ( 𝑥𝐴𝑥 = 𝐴 ) → 𝐴𝐴 )
6 3 5 sylan2b ( ( 𝑥𝐴𝑥 ∈ { 𝐴 } ) → 𝐴𝐴 )
7 2 6 sylbi ( 𝑥 ∈ ( 𝐴 ∩ { 𝐴 } ) → 𝐴𝐴 )
8 7 exlimiv ( ∃ 𝑥 𝑥 ∈ ( 𝐴 ∩ { 𝐴 } ) → 𝐴𝐴 )
9 1 8 mto ¬ ∃ 𝑥 𝑥 ∈ ( 𝐴 ∩ { 𝐴 } )
10 n0 ( ( 𝐴 ∩ { 𝐴 } ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝐴 ∩ { 𝐴 } ) )
11 9 10 mtbir ¬ ( 𝐴 ∩ { 𝐴 } ) ≠ ∅
12 nne ( ¬ ( 𝐴 ∩ { 𝐴 } ) ≠ ∅ ↔ ( 𝐴 ∩ { 𝐴 } ) = ∅ )
13 11 12 mpbi ( 𝐴 ∩ { 𝐴 } ) = ∅