Step |
Hyp |
Ref |
Expression |
1 |
|
elirr |
⊢ ¬ 𝐴 ∈ 𝐴 |
2 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝐴 ∩ { 𝐴 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ { 𝐴 } ) ) |
3 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 ) |
4 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐴 ↔ 𝐴 ∈ 𝐴 ) ) |
5 |
4
|
biimpac |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐴 ) → 𝐴 ∈ 𝐴 ) |
6 |
3 5
|
sylan2b |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ { 𝐴 } ) → 𝐴 ∈ 𝐴 ) |
7 |
2 6
|
sylbi |
⊢ ( 𝑥 ∈ ( 𝐴 ∩ { 𝐴 } ) → 𝐴 ∈ 𝐴 ) |
8 |
7
|
exlimiv |
⊢ ( ∃ 𝑥 𝑥 ∈ ( 𝐴 ∩ { 𝐴 } ) → 𝐴 ∈ 𝐴 ) |
9 |
1 8
|
mto |
⊢ ¬ ∃ 𝑥 𝑥 ∈ ( 𝐴 ∩ { 𝐴 } ) |
10 |
|
n0 |
⊢ ( ( 𝐴 ∩ { 𝐴 } ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝐴 ∩ { 𝐴 } ) ) |
11 |
9 10
|
mtbir |
⊢ ¬ ( 𝐴 ∩ { 𝐴 } ) ≠ ∅ |
12 |
|
nne |
⊢ ( ¬ ( 𝐴 ∩ { 𝐴 } ) ≠ ∅ ↔ ( 𝐴 ∩ { 𝐴 } ) = ∅ ) |
13 |
11 12
|
mpbi |
⊢ ( 𝐴 ∩ { 𝐴 } ) = ∅ |