Metamath Proof Explorer


Theorem bnj523

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj523.1 ( 𝜑 ↔ ( 𝐹 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
bnj523.2 ( 𝜑′[ 𝑀 / 𝑛 ] 𝜑 )
bnj523.3 𝑀 ∈ V
Assertion bnj523 ( 𝜑′ ↔ ( 𝐹 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )

Proof

Step Hyp Ref Expression
1 bnj523.1 ( 𝜑 ↔ ( 𝐹 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
2 bnj523.2 ( 𝜑′[ 𝑀 / 𝑛 ] 𝜑 )
3 bnj523.3 𝑀 ∈ V
4 1 sbcbii ( [ 𝑀 / 𝑛 ] 𝜑[ 𝑀 / 𝑛 ] ( 𝐹 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
5 3 bnj525 ( [ 𝑀 / 𝑛 ] ( 𝐹 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ↔ ( 𝐹 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
6 2 4 5 3bitri ( 𝜑′ ↔ ( 𝐹 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )