Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj523.1 | ⊢ ( 𝜑 ↔ ( 𝐹 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) | |
bnj523.2 | ⊢ ( 𝜑′ ↔ [ 𝑀 / 𝑛 ] 𝜑 ) | ||
bnj523.3 | ⊢ 𝑀 ∈ V | ||
Assertion | bnj523 | ⊢ ( 𝜑′ ↔ ( 𝐹 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj523.1 | ⊢ ( 𝜑 ↔ ( 𝐹 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) | |
2 | bnj523.2 | ⊢ ( 𝜑′ ↔ [ 𝑀 / 𝑛 ] 𝜑 ) | |
3 | bnj523.3 | ⊢ 𝑀 ∈ V | |
4 | 1 | sbcbii | ⊢ ( [ 𝑀 / 𝑛 ] 𝜑 ↔ [ 𝑀 / 𝑛 ] ( 𝐹 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
5 | 3 | bnj525 | ⊢ ( [ 𝑀 / 𝑛 ] ( 𝐹 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ↔ ( 𝐹 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
6 | 2 4 5 | 3bitri | ⊢ ( 𝜑′ ↔ ( 𝐹 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |