Metamath Proof Explorer


Theorem bnj539

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj539.1 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝐹 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐹𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj539.2 ( 𝜓′[ 𝑀 / 𝑛 ] 𝜓 )
bnj539.3 𝑀 ∈ V
Assertion bnj539 ( 𝜓′ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑀 → ( 𝐹 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐹𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 bnj539.1 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝐹 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐹𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
2 bnj539.2 ( 𝜓′[ 𝑀 / 𝑛 ] 𝜓 )
3 bnj539.3 𝑀 ∈ V
4 1 sbcbii ( [ 𝑀 / 𝑛 ] 𝜓[ 𝑀 / 𝑛 ]𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝐹 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐹𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
5 3 bnj538 ( [ 𝑀 / 𝑛 ]𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝐹 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐹𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑖 ∈ ω [ 𝑀 / 𝑛 ] ( suc 𝑖𝑛 → ( 𝐹 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐹𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
6 sbcimg ( 𝑀 ∈ V → ( [ 𝑀 / 𝑛 ] ( suc 𝑖𝑛 → ( 𝐹 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐹𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( [ 𝑀 / 𝑛 ] suc 𝑖𝑛[ 𝑀 / 𝑛 ] ( 𝐹 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐹𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
7 3 6 ax-mp ( [ 𝑀 / 𝑛 ] ( suc 𝑖𝑛 → ( 𝐹 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐹𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( [ 𝑀 / 𝑛 ] suc 𝑖𝑛[ 𝑀 / 𝑛 ] ( 𝐹 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐹𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
8 sbcel2gv ( 𝑀 ∈ V → ( [ 𝑀 / 𝑛 ] suc 𝑖𝑛 ↔ suc 𝑖𝑀 ) )
9 3 8 ax-mp ( [ 𝑀 / 𝑛 ] suc 𝑖𝑛 ↔ suc 𝑖𝑀 )
10 3 bnj525 ( [ 𝑀 / 𝑛 ] ( 𝐹 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐹𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ ( 𝐹 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐹𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
11 9 10 imbi12i ( ( [ 𝑀 / 𝑛 ] suc 𝑖𝑛[ 𝑀 / 𝑛 ] ( 𝐹 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐹𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( suc 𝑖𝑀 → ( 𝐹 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐹𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
12 7 11 bitri ( [ 𝑀 / 𝑛 ] ( suc 𝑖𝑛 → ( 𝐹 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐹𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( suc 𝑖𝑀 → ( 𝐹 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐹𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
13 12 ralbii ( ∀ 𝑖 ∈ ω [ 𝑀 / 𝑛 ] ( suc 𝑖𝑛 → ( 𝐹 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐹𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑀 → ( 𝐹 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐹𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
14 5 13 bitri ( [ 𝑀 / 𝑛 ]𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝐹 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐹𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑀 → ( 𝐹 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐹𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
15 4 14 bitri ( [ 𝑀 / 𝑛 ] 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑀 → ( 𝐹 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐹𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
16 2 15 bitri ( 𝜓′ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑀 → ( 𝐹 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐹𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )