Step |
Hyp |
Ref |
Expression |
1 |
|
bnj539.1 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
2 |
|
bnj539.2 |
⊢ ( 𝜓′ ↔ [ 𝑀 / 𝑛 ] 𝜓 ) |
3 |
|
bnj539.3 |
⊢ 𝑀 ∈ V |
4 |
1
|
sbcbii |
⊢ ( [ 𝑀 / 𝑛 ] 𝜓 ↔ [ 𝑀 / 𝑛 ] ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
5 |
3
|
bnj538 |
⊢ ( [ 𝑀 / 𝑛 ] ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑖 ∈ ω [ 𝑀 / 𝑛 ] ( suc 𝑖 ∈ 𝑛 → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
6 |
|
sbcimg |
⊢ ( 𝑀 ∈ V → ( [ 𝑀 / 𝑛 ] ( suc 𝑖 ∈ 𝑛 → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( [ 𝑀 / 𝑛 ] suc 𝑖 ∈ 𝑛 → [ 𝑀 / 𝑛 ] ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
7 |
3 6
|
ax-mp |
⊢ ( [ 𝑀 / 𝑛 ] ( suc 𝑖 ∈ 𝑛 → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( [ 𝑀 / 𝑛 ] suc 𝑖 ∈ 𝑛 → [ 𝑀 / 𝑛 ] ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
8 |
|
sbcel2gv |
⊢ ( 𝑀 ∈ V → ( [ 𝑀 / 𝑛 ] suc 𝑖 ∈ 𝑛 ↔ suc 𝑖 ∈ 𝑀 ) ) |
9 |
3 8
|
ax-mp |
⊢ ( [ 𝑀 / 𝑛 ] suc 𝑖 ∈ 𝑛 ↔ suc 𝑖 ∈ 𝑀 ) |
10 |
3
|
bnj525 |
⊢ ( [ 𝑀 / 𝑛 ] ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
11 |
9 10
|
imbi12i |
⊢ ( ( [ 𝑀 / 𝑛 ] suc 𝑖 ∈ 𝑛 → [ 𝑀 / 𝑛 ] ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( suc 𝑖 ∈ 𝑀 → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
12 |
7 11
|
bitri |
⊢ ( [ 𝑀 / 𝑛 ] ( suc 𝑖 ∈ 𝑛 → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( suc 𝑖 ∈ 𝑀 → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
13 |
12
|
ralbii |
⊢ ( ∀ 𝑖 ∈ ω [ 𝑀 / 𝑛 ] ( suc 𝑖 ∈ 𝑛 → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑀 → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
14 |
5 13
|
bitri |
⊢ ( [ 𝑀 / 𝑛 ] ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑀 → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
15 |
4 14
|
bitri |
⊢ ( [ 𝑀 / 𝑛 ] 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑀 → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
16 |
2 15
|
bitri |
⊢ ( 𝜓′ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑀 → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |