Step |
Hyp |
Ref |
Expression |
1 |
|
bnj546.1 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
2 |
|
bnj546.2 |
⊢ ( 𝜏 ↔ ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) ) |
3 |
|
bnj546.3 |
⊢ ( 𝜎 ↔ ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚 ) ) |
4 |
|
bnj546.4 |
⊢ ( 𝜑′ ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
5 |
|
bnj546.5 |
⊢ ( 𝜓′ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑚 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
6 |
|
3simpc |
⊢ ( ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) → ( 𝜑′ ∧ 𝜓′ ) ) |
7 |
2 6
|
sylbi |
⊢ ( 𝜏 → ( 𝜑′ ∧ 𝜓′ ) ) |
8 |
1
|
bnj923 |
⊢ ( 𝑚 ∈ 𝐷 → 𝑚 ∈ ω ) |
9 |
8
|
3ad2ant1 |
⊢ ( ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚 ) → 𝑚 ∈ ω ) |
10 |
|
simp3 |
⊢ ( ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚 ) → 𝑝 ∈ 𝑚 ) |
11 |
9 10
|
jca |
⊢ ( ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚 ) → ( 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ) |
12 |
3 11
|
sylbi |
⊢ ( 𝜎 → ( 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ) |
13 |
7 12
|
anim12i |
⊢ ( ( 𝜏 ∧ 𝜎 ) → ( ( 𝜑′ ∧ 𝜓′ ) ∧ ( 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ) ) |
14 |
|
bnj256 |
⊢ ( ( 𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ↔ ( ( 𝜑′ ∧ 𝜓′ ) ∧ ( 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ) ) |
15 |
13 14
|
sylibr |
⊢ ( ( 𝜏 ∧ 𝜎 ) → ( 𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ) |
16 |
15
|
anim2i |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ ( 𝜏 ∧ 𝜎 ) ) → ( 𝑅 FrSe 𝐴 ∧ ( 𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ) ) |
17 |
16
|
3impb |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) → ( 𝑅 FrSe 𝐴 ∧ ( 𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ) ) |
18 |
|
biid |
⊢ ( ( 𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ↔ ( 𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ) |
19 |
4 5 18
|
bnj518 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ ( 𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ) → ∀ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) |
20 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑝 ) ∈ V |
21 |
|
iunexg |
⊢ ( ( ( 𝑓 ‘ 𝑝 ) ∈ V ∧ ∀ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) → ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) |
22 |
20 21
|
mpan |
⊢ ( ∀ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ∈ V → ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) |
23 |
17 19 22
|
3syl |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) → ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) |