Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bnj551 | ⊢ ( ( 𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖 ) → 𝑝 = 𝑖 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2 | ⊢ ( ( 𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖 ) → suc 𝑝 = suc 𝑖 ) | |
2 | suc11reg | ⊢ ( suc 𝑝 = suc 𝑖 ↔ 𝑝 = 𝑖 ) | |
3 | 1 2 | sylib | ⊢ ( ( 𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖 ) → 𝑝 = 𝑖 ) |