Metamath Proof Explorer


Theorem bnj553

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj553.1 ( 𝜑′ ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
bnj553.2 ( 𝜓′ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑚 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj553.3 𝐷 = ( ω ∖ { ∅ } )
bnj553.4 𝐺 = ( 𝑓 ∪ { ⟨ 𝑚 , 𝑦 ∈ ( 𝑓𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⟩ } )
bnj553.5 ( 𝜏 ↔ ( 𝑓 Fn 𝑚𝜑′𝜓′ ) )
bnj553.6 ( 𝜎 ↔ ( 𝑚𝐷𝑛 = suc 𝑚𝑝𝑚 ) )
bnj553.7 𝐶 = 𝑦 ∈ ( 𝑓𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 )
bnj553.8 𝐺 = ( 𝑓 ∪ { ⟨ 𝑚 , 𝐶 ⟩ } )
bnj553.9 𝐵 = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 )
bnj553.10 𝐾 = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 )
bnj553.11 𝐿 = 𝑦 ∈ ( 𝐺𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 )
bnj553.12 ( ( 𝑅 FrSe 𝐴𝜏𝜎 ) → 𝐺 Fn 𝑛 )
Assertion bnj553 ( ( ( 𝑅 FrSe 𝐴𝜏𝜎 ) ∧ 𝑖𝑚𝑝 = 𝑖 ) → ( 𝐺𝑚 ) = 𝐿 )

Proof

Step Hyp Ref Expression
1 bnj553.1 ( 𝜑′ ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
2 bnj553.2 ( 𝜓′ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑚 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
3 bnj553.3 𝐷 = ( ω ∖ { ∅ } )
4 bnj553.4 𝐺 = ( 𝑓 ∪ { ⟨ 𝑚 , 𝑦 ∈ ( 𝑓𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⟩ } )
5 bnj553.5 ( 𝜏 ↔ ( 𝑓 Fn 𝑚𝜑′𝜓′ ) )
6 bnj553.6 ( 𝜎 ↔ ( 𝑚𝐷𝑛 = suc 𝑚𝑝𝑚 ) )
7 bnj553.7 𝐶 = 𝑦 ∈ ( 𝑓𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 )
8 bnj553.8 𝐺 = ( 𝑓 ∪ { ⟨ 𝑚 , 𝐶 ⟩ } )
9 bnj553.9 𝐵 = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 )
10 bnj553.10 𝐾 = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 )
11 bnj553.11 𝐿 = 𝑦 ∈ ( 𝐺𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 )
12 bnj553.12 ( ( 𝑅 FrSe 𝐴𝜏𝜎 ) → 𝐺 Fn 𝑛 )
13 12 fnfund ( ( 𝑅 FrSe 𝐴𝜏𝜎 ) → Fun 𝐺 )
14 opex 𝑚 , 𝐶 ⟩ ∈ V
15 14 snid 𝑚 , 𝐶 ⟩ ∈ { ⟨ 𝑚 , 𝐶 ⟩ }
16 elun2 ( ⟨ 𝑚 , 𝐶 ⟩ ∈ { ⟨ 𝑚 , 𝐶 ⟩ } → ⟨ 𝑚 , 𝐶 ⟩ ∈ ( 𝑓 ∪ { ⟨ 𝑚 , 𝐶 ⟩ } ) )
17 15 16 ax-mp 𝑚 , 𝐶 ⟩ ∈ ( 𝑓 ∪ { ⟨ 𝑚 , 𝐶 ⟩ } )
18 17 8 eleqtrri 𝑚 , 𝐶 ⟩ ∈ 𝐺
19 funopfv ( Fun 𝐺 → ( ⟨ 𝑚 , 𝐶 ⟩ ∈ 𝐺 → ( 𝐺𝑚 ) = 𝐶 ) )
20 13 18 19 mpisyl ( ( 𝑅 FrSe 𝐴𝜏𝜎 ) → ( 𝐺𝑚 ) = 𝐶 )
21 20 3ad2ant1 ( ( ( 𝑅 FrSe 𝐴𝜏𝜎 ) ∧ 𝑖𝑚𝑝 = 𝑖 ) → ( 𝐺𝑚 ) = 𝐶 )
22 fveq2 ( 𝑝 = 𝑖 → ( 𝐺𝑝 ) = ( 𝐺𝑖 ) )
23 22 bnj1113 ( 𝑝 = 𝑖 𝑦 ∈ ( 𝐺𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
24 23 11 10 3eqtr4g ( 𝑝 = 𝑖𝐿 = 𝐾 )
25 24 3ad2ant3 ( ( ( 𝑅 FrSe 𝐴𝜏𝜎 ) ∧ 𝑖𝑚𝑝 = 𝑖 ) → 𝐿 = 𝐾 )
26 5 9 10 4 12 bnj548 ( ( ( 𝑅 FrSe 𝐴𝜏𝜎 ) ∧ 𝑖𝑚 ) → 𝐵 = 𝐾 )
27 26 3adant3 ( ( ( 𝑅 FrSe 𝐴𝜏𝜎 ) ∧ 𝑖𝑚𝑝 = 𝑖 ) → 𝐵 = 𝐾 )
28 fveq2 ( 𝑝 = 𝑖 → ( 𝑓𝑝 ) = ( 𝑓𝑖 ) )
29 28 bnj1113 ( 𝑝 = 𝑖 𝑦 ∈ ( 𝑓𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
30 9 7 eqeq12i ( 𝐵 = 𝐶 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = 𝑦 ∈ ( 𝑓𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
31 eqcom ( 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = 𝑦 ∈ ( 𝑓𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ 𝑦 ∈ ( 𝑓𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
32 30 31 bitri ( 𝐵 = 𝐶 𝑦 ∈ ( 𝑓𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
33 29 32 sylibr ( 𝑝 = 𝑖𝐵 = 𝐶 )
34 33 3ad2ant3 ( ( ( 𝑅 FrSe 𝐴𝜏𝜎 ) ∧ 𝑖𝑚𝑝 = 𝑖 ) → 𝐵 = 𝐶 )
35 25 27 34 3eqtr2rd ( ( ( 𝑅 FrSe 𝐴𝜏𝜎 ) ∧ 𝑖𝑚𝑝 = 𝑖 ) → 𝐶 = 𝐿 )
36 21 35 eqtrd ( ( ( 𝑅 FrSe 𝐴𝜏𝜎 ) ∧ 𝑖𝑚𝑝 = 𝑖 ) → ( 𝐺𝑚 ) = 𝐿 )