| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj553.1 | 
							⊢ ( 𝜑′  ↔  ( 𝑓 ‘ ∅ )  =   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj553.2 | 
							⊢ ( 𝜓′  ↔  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑚  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj553.3 | 
							⊢ 𝐷  =  ( ω  ∖  { ∅ } )  | 
						
						
							| 4 | 
							
								
							 | 
							bnj553.4 | 
							⊢ 𝐺  =  ( 𝑓  ∪  { 〈 𝑚 ,  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑝 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) 〉 } )  | 
						
						
							| 5 | 
							
								
							 | 
							bnj553.5 | 
							⊢ ( 𝜏  ↔  ( 𝑓  Fn  𝑚  ∧  𝜑′  ∧  𝜓′ ) )  | 
						
						
							| 6 | 
							
								
							 | 
							bnj553.6 | 
							⊢ ( 𝜎  ↔  ( 𝑚  ∈  𝐷  ∧  𝑛  =  suc  𝑚  ∧  𝑝  ∈  𝑚 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							bnj553.7 | 
							⊢ 𝐶  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑝 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  | 
						
						
							| 8 | 
							
								
							 | 
							bnj553.8 | 
							⊢ 𝐺  =  ( 𝑓  ∪  { 〈 𝑚 ,  𝐶 〉 } )  | 
						
						
							| 9 | 
							
								
							 | 
							bnj553.9 | 
							⊢ 𝐵  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  | 
						
						
							| 10 | 
							
								
							 | 
							bnj553.10 | 
							⊢ 𝐾  =  ∪  𝑦  ∈  ( 𝐺 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  | 
						
						
							| 11 | 
							
								
							 | 
							bnj553.11 | 
							⊢ 𝐿  =  ∪  𝑦  ∈  ( 𝐺 ‘ 𝑝 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  | 
						
						
							| 12 | 
							
								
							 | 
							bnj553.12 | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝜏  ∧  𝜎 )  →  𝐺  Fn  𝑛 )  | 
						
						
							| 13 | 
							
								12
							 | 
							fnfund | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝜏  ∧  𝜎 )  →  Fun  𝐺 )  | 
						
						
							| 14 | 
							
								
							 | 
							opex | 
							⊢ 〈 𝑚 ,  𝐶 〉  ∈  V  | 
						
						
							| 15 | 
							
								14
							 | 
							snid | 
							⊢ 〈 𝑚 ,  𝐶 〉  ∈  { 〈 𝑚 ,  𝐶 〉 }  | 
						
						
							| 16 | 
							
								
							 | 
							elun2 | 
							⊢ ( 〈 𝑚 ,  𝐶 〉  ∈  { 〈 𝑚 ,  𝐶 〉 }  →  〈 𝑚 ,  𝐶 〉  ∈  ( 𝑓  ∪  { 〈 𝑚 ,  𝐶 〉 } ) )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							ax-mp | 
							⊢ 〈 𝑚 ,  𝐶 〉  ∈  ( 𝑓  ∪  { 〈 𝑚 ,  𝐶 〉 } )  | 
						
						
							| 18 | 
							
								17 8
							 | 
							eleqtrri | 
							⊢ 〈 𝑚 ,  𝐶 〉  ∈  𝐺  | 
						
						
							| 19 | 
							
								
							 | 
							funopfv | 
							⊢ ( Fun  𝐺  →  ( 〈 𝑚 ,  𝐶 〉  ∈  𝐺  →  ( 𝐺 ‘ 𝑚 )  =  𝐶 ) )  | 
						
						
							| 20 | 
							
								13 18 19
							 | 
							mpisyl | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝜏  ∧  𝜎 )  →  ( 𝐺 ‘ 𝑚 )  =  𝐶 )  | 
						
						
							| 21 | 
							
								20
							 | 
							3ad2ant1 | 
							⊢ ( ( ( 𝑅  FrSe  𝐴  ∧  𝜏  ∧  𝜎 )  ∧  𝑖  ∈  𝑚  ∧  𝑝  =  𝑖 )  →  ( 𝐺 ‘ 𝑚 )  =  𝐶 )  | 
						
						
							| 22 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑝  =  𝑖  →  ( 𝐺 ‘ 𝑝 )  =  ( 𝐺 ‘ 𝑖 ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							bnj1113 | 
							⊢ ( 𝑝  =  𝑖  →  ∪  𝑦  ∈  ( 𝐺 ‘ 𝑝 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  =  ∪  𝑦  ∈  ( 𝐺 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 24 | 
							
								23 11 10
							 | 
							3eqtr4g | 
							⊢ ( 𝑝  =  𝑖  →  𝐿  =  𝐾 )  | 
						
						
							| 25 | 
							
								24
							 | 
							3ad2ant3 | 
							⊢ ( ( ( 𝑅  FrSe  𝐴  ∧  𝜏  ∧  𝜎 )  ∧  𝑖  ∈  𝑚  ∧  𝑝  =  𝑖 )  →  𝐿  =  𝐾 )  | 
						
						
							| 26 | 
							
								5 9 10 4 12
							 | 
							bnj548 | 
							⊢ ( ( ( 𝑅  FrSe  𝐴  ∧  𝜏  ∧  𝜎 )  ∧  𝑖  ∈  𝑚 )  →  𝐵  =  𝐾 )  | 
						
						
							| 27 | 
							
								26
							 | 
							3adant3 | 
							⊢ ( ( ( 𝑅  FrSe  𝐴  ∧  𝜏  ∧  𝜎 )  ∧  𝑖  ∈  𝑚  ∧  𝑝  =  𝑖 )  →  𝐵  =  𝐾 )  | 
						
						
							| 28 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑝  =  𝑖  →  ( 𝑓 ‘ 𝑝 )  =  ( 𝑓 ‘ 𝑖 ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							bnj1113 | 
							⊢ ( 𝑝  =  𝑖  →  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑝 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 30 | 
							
								9 7
							 | 
							eqeq12i | 
							⊢ ( 𝐵  =  𝐶  ↔  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑝 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 31 | 
							
								
							 | 
							eqcom | 
							⊢ ( ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑝 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  ↔  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑝 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							bitri | 
							⊢ ( 𝐵  =  𝐶  ↔  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑝 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 33 | 
							
								29 32
							 | 
							sylibr | 
							⊢ ( 𝑝  =  𝑖  →  𝐵  =  𝐶 )  | 
						
						
							| 34 | 
							
								33
							 | 
							3ad2ant3 | 
							⊢ ( ( ( 𝑅  FrSe  𝐴  ∧  𝜏  ∧  𝜎 )  ∧  𝑖  ∈  𝑚  ∧  𝑝  =  𝑖 )  →  𝐵  =  𝐶 )  | 
						
						
							| 35 | 
							
								25 27 34
							 | 
							3eqtr2rd | 
							⊢ ( ( ( 𝑅  FrSe  𝐴  ∧  𝜏  ∧  𝜎 )  ∧  𝑖  ∈  𝑚  ∧  𝑝  =  𝑖 )  →  𝐶  =  𝐿 )  | 
						
						
							| 36 | 
							
								21 35
							 | 
							eqtrd | 
							⊢ ( ( ( 𝑅  FrSe  𝐴  ∧  𝜏  ∧  𝜎 )  ∧  𝑖  ∈  𝑚  ∧  𝑝  =  𝑖 )  →  ( 𝐺 ‘ 𝑚 )  =  𝐿 )  |