Step |
Hyp |
Ref |
Expression |
1 |
|
bnj554.19 |
⊢ ( 𝜂 ↔ ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ) |
2 |
|
bnj554.20 |
⊢ ( 𝜁 ↔ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 = suc 𝑖 ) ) |
3 |
|
bnj554.21 |
⊢ 𝐾 = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
4 |
|
bnj554.22 |
⊢ 𝐿 = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
5 |
|
bnj554.23 |
⊢ 𝐾 = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
6 |
|
bnj554.24 |
⊢ 𝐿 = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
7 |
1
|
bnj1254 |
⊢ ( 𝜂 → 𝑚 = suc 𝑝 ) |
8 |
2
|
simp3bi |
⊢ ( 𝜁 → 𝑚 = suc 𝑖 ) |
9 |
|
simpr |
⊢ ( ( 𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖 ) → 𝑚 = suc 𝑖 ) |
10 |
|
bnj551 |
⊢ ( ( 𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖 ) → 𝑝 = 𝑖 ) |
11 |
|
fveq2 |
⊢ ( 𝑚 = suc 𝑖 → ( 𝐺 ‘ 𝑚 ) = ( 𝐺 ‘ suc 𝑖 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑝 = 𝑖 → ( 𝐺 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑖 ) ) |
13 |
|
iuneq1 |
⊢ ( ( 𝐺 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑖 ) → ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
14 |
13 6 5
|
3eqtr4g |
⊢ ( ( 𝐺 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑖 ) → 𝐿 = 𝐾 ) |
15 |
12 14
|
syl |
⊢ ( 𝑝 = 𝑖 → 𝐿 = 𝐾 ) |
16 |
11 15
|
eqeqan12d |
⊢ ( ( 𝑚 = suc 𝑖 ∧ 𝑝 = 𝑖 ) → ( ( 𝐺 ‘ 𝑚 ) = 𝐿 ↔ ( 𝐺 ‘ suc 𝑖 ) = 𝐾 ) ) |
17 |
9 10 16
|
syl2anc |
⊢ ( ( 𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖 ) → ( ( 𝐺 ‘ 𝑚 ) = 𝐿 ↔ ( 𝐺 ‘ suc 𝑖 ) = 𝐾 ) ) |
18 |
7 8 17
|
syl2an |
⊢ ( ( 𝜂 ∧ 𝜁 ) → ( ( 𝐺 ‘ 𝑚 ) = 𝐿 ↔ ( 𝐺 ‘ suc 𝑖 ) = 𝐾 ) ) |