Metamath Proof Explorer


Theorem bnj554

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj554.19 ( 𝜂 ↔ ( 𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) )
bnj554.20 ( 𝜁 ↔ ( 𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖 ) )
bnj554.21 𝐾 = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 )
bnj554.22 𝐿 = 𝑦 ∈ ( 𝐺𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 )
bnj554.23 𝐾 = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 )
bnj554.24 𝐿 = 𝑦 ∈ ( 𝐺𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 )
Assertion bnj554 ( ( 𝜂𝜁 ) → ( ( 𝐺𝑚 ) = 𝐿 ↔ ( 𝐺 ‘ suc 𝑖 ) = 𝐾 ) )

Proof

Step Hyp Ref Expression
1 bnj554.19 ( 𝜂 ↔ ( 𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) )
2 bnj554.20 ( 𝜁 ↔ ( 𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖 ) )
3 bnj554.21 𝐾 = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 )
4 bnj554.22 𝐿 = 𝑦 ∈ ( 𝐺𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 )
5 bnj554.23 𝐾 = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 )
6 bnj554.24 𝐿 = 𝑦 ∈ ( 𝐺𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 )
7 1 bnj1254 ( 𝜂𝑚 = suc 𝑝 )
8 2 simp3bi ( 𝜁𝑚 = suc 𝑖 )
9 simpr ( ( 𝑚 = suc 𝑝𝑚 = suc 𝑖 ) → 𝑚 = suc 𝑖 )
10 bnj551 ( ( 𝑚 = suc 𝑝𝑚 = suc 𝑖 ) → 𝑝 = 𝑖 )
11 fveq2 ( 𝑚 = suc 𝑖 → ( 𝐺𝑚 ) = ( 𝐺 ‘ suc 𝑖 ) )
12 fveq2 ( 𝑝 = 𝑖 → ( 𝐺𝑝 ) = ( 𝐺𝑖 ) )
13 iuneq1 ( ( 𝐺𝑝 ) = ( 𝐺𝑖 ) → 𝑦 ∈ ( 𝐺𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
14 13 6 5 3eqtr4g ( ( 𝐺𝑝 ) = ( 𝐺𝑖 ) → 𝐿 = 𝐾 )
15 12 14 syl ( 𝑝 = 𝑖𝐿 = 𝐾 )
16 11 15 eqeqan12d ( ( 𝑚 = suc 𝑖𝑝 = 𝑖 ) → ( ( 𝐺𝑚 ) = 𝐿 ↔ ( 𝐺 ‘ suc 𝑖 ) = 𝐾 ) )
17 9 10 16 syl2anc ( ( 𝑚 = suc 𝑝𝑚 = suc 𝑖 ) → ( ( 𝐺𝑚 ) = 𝐿 ↔ ( 𝐺 ‘ suc 𝑖 ) = 𝐾 ) )
18 7 8 17 syl2an ( ( 𝜂𝜁 ) → ( ( 𝐺𝑚 ) = 𝐿 ↔ ( 𝐺 ‘ suc 𝑖 ) = 𝐾 ) )