Metamath Proof Explorer


Theorem bnj556

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj556.18 ( 𝜎 ↔ ( 𝑚𝐷𝑛 = suc 𝑚𝑝𝑚 ) )
bnj556.19 ( 𝜂 ↔ ( 𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) )
Assertion bnj556 ( 𝜂𝜎 )

Proof

Step Hyp Ref Expression
1 bnj556.18 ( 𝜎 ↔ ( 𝑚𝐷𝑛 = suc 𝑚𝑝𝑚 ) )
2 bnj556.19 ( 𝜂 ↔ ( 𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) )
3 vex 𝑝 ∈ V
4 3 bnj216 ( 𝑚 = suc 𝑝𝑝𝑚 )
5 4 3anim3i ( ( 𝑚𝐷𝑛 = suc 𝑚𝑚 = suc 𝑝 ) → ( 𝑚𝐷𝑛 = suc 𝑚𝑝𝑚 ) )
6 5 adantr ( ( ( 𝑚𝐷𝑛 = suc 𝑚𝑚 = suc 𝑝 ) ∧ 𝑝 ∈ ω ) → ( 𝑚𝐷𝑛 = suc 𝑚𝑝𝑚 ) )
7 bnj258 ( ( 𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ↔ ( ( 𝑚𝐷𝑛 = suc 𝑚𝑚 = suc 𝑝 ) ∧ 𝑝 ∈ ω ) )
8 2 7 bitri ( 𝜂 ↔ ( ( 𝑚𝐷𝑛 = suc 𝑚𝑚 = suc 𝑝 ) ∧ 𝑝 ∈ ω ) )
9 6 8 1 3imtr4i ( 𝜂𝜎 )