Step |
Hyp |
Ref |
Expression |
1 |
|
bnj558.3 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
2 |
|
bnj558.16 |
⊢ 𝐺 = ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 } ) |
3 |
|
bnj558.17 |
⊢ ( 𝜏 ↔ ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) ) |
4 |
|
bnj558.18 |
⊢ ( 𝜎 ↔ ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚 ) ) |
5 |
|
bnj558.19 |
⊢ ( 𝜂 ↔ ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ) |
6 |
|
bnj558.20 |
⊢ ( 𝜁 ↔ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 = suc 𝑖 ) ) |
7 |
|
bnj558.21 |
⊢ 𝐵 = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
8 |
|
bnj558.22 |
⊢ 𝐶 = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
9 |
|
bnj558.23 |
⊢ 𝐾 = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
10 |
|
bnj558.24 |
⊢ 𝐿 = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
11 |
|
bnj558.25 |
⊢ 𝐺 = ( 𝑓 ∪ { 〈 𝑚 , 𝐶 〉 } ) |
12 |
|
bnj558.28 |
⊢ ( 𝜑′ ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
13 |
|
bnj558.29 |
⊢ ( 𝜓′ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑚 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
14 |
|
bnj558.36 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) → 𝐺 Fn 𝑛 ) |
15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
bnj557 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜁 ) → ( 𝐺 ‘ 𝑚 ) = 𝐿 ) |
16 |
|
bnj422 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜁 ) ↔ ( 𝜂 ∧ 𝜁 ∧ 𝑅 FrSe 𝐴 ∧ 𝜏 ) ) |
17 |
|
bnj253 |
⊢ ( ( 𝜂 ∧ 𝜁 ∧ 𝑅 FrSe 𝐴 ∧ 𝜏 ) ↔ ( ( 𝜂 ∧ 𝜁 ) ∧ 𝑅 FrSe 𝐴 ∧ 𝜏 ) ) |
18 |
16 17
|
bitri |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜁 ) ↔ ( ( 𝜂 ∧ 𝜁 ) ∧ 𝑅 FrSe 𝐴 ∧ 𝜏 ) ) |
19 |
18
|
simp1bi |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜁 ) → ( 𝜂 ∧ 𝜁 ) ) |
20 |
5 6 9 10 9 10
|
bnj554 |
⊢ ( ( 𝜂 ∧ 𝜁 ) → ( ( 𝐺 ‘ 𝑚 ) = 𝐿 ↔ ( 𝐺 ‘ suc 𝑖 ) = 𝐾 ) ) |
21 |
19 20
|
syl |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜁 ) → ( ( 𝐺 ‘ 𝑚 ) = 𝐿 ↔ ( 𝐺 ‘ suc 𝑖 ) = 𝐾 ) ) |
22 |
15 21
|
mpbid |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜁 ) → ( 𝐺 ‘ suc 𝑖 ) = 𝐾 ) |