Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj561.18 | ⊢ ( 𝜎 ↔ ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚 ) ) | |
bnj561.19 | ⊢ ( 𝜂 ↔ ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ) | ||
bnj561.37 | ⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) → 𝐺 Fn 𝑛 ) | ||
Assertion | bnj561 | ⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) → 𝐺 Fn 𝑛 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj561.18 | ⊢ ( 𝜎 ↔ ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚 ) ) | |
2 | bnj561.19 | ⊢ ( 𝜂 ↔ ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ) | |
3 | bnj561.37 | ⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) → 𝐺 Fn 𝑛 ) | |
4 | 1 2 | bnj556 | ⊢ ( 𝜂 → 𝜎 ) |
5 | 4 3 | syl3an3 | ⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) → 𝐺 Fn 𝑛 ) |