Step |
Hyp |
Ref |
Expression |
1 |
|
bnj563.19 |
⊢ ( 𝜂 ↔ ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ) |
2 |
|
bnj563.21 |
⊢ ( 𝜌 ↔ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖 ) ) |
3 |
|
bnj312 |
⊢ ( ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ↔ ( 𝑛 = suc 𝑚 ∧ 𝑚 ∈ 𝐷 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ) |
4 |
|
bnj252 |
⊢ ( ( 𝑛 = suc 𝑚 ∧ 𝑚 ∈ 𝐷 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ↔ ( 𝑛 = suc 𝑚 ∧ ( 𝑚 ∈ 𝐷 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ) ) |
5 |
3 4
|
bitri |
⊢ ( ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ↔ ( 𝑛 = suc 𝑚 ∧ ( 𝑚 ∈ 𝐷 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ) ) |
6 |
5
|
simplbi |
⊢ ( ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) → 𝑛 = suc 𝑚 ) |
7 |
1 6
|
sylbi |
⊢ ( 𝜂 → 𝑛 = suc 𝑚 ) |
8 |
2
|
simp2bi |
⊢ ( 𝜌 → suc 𝑖 ∈ 𝑛 ) |
9 |
2
|
simp3bi |
⊢ ( 𝜌 → 𝑚 ≠ suc 𝑖 ) |
10 |
8 9
|
jca |
⊢ ( 𝜌 → ( suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖 ) ) |
11 |
|
necom |
⊢ ( 𝑚 ≠ suc 𝑖 ↔ suc 𝑖 ≠ 𝑚 ) |
12 |
|
eleq2 |
⊢ ( 𝑛 = suc 𝑚 → ( suc 𝑖 ∈ 𝑛 ↔ suc 𝑖 ∈ suc 𝑚 ) ) |
13 |
12
|
biimpa |
⊢ ( ( 𝑛 = suc 𝑚 ∧ suc 𝑖 ∈ 𝑛 ) → suc 𝑖 ∈ suc 𝑚 ) |
14 |
|
elsuci |
⊢ ( suc 𝑖 ∈ suc 𝑚 → ( suc 𝑖 ∈ 𝑚 ∨ suc 𝑖 = 𝑚 ) ) |
15 |
|
orcom |
⊢ ( ( suc 𝑖 = 𝑚 ∨ suc 𝑖 ∈ 𝑚 ) ↔ ( suc 𝑖 ∈ 𝑚 ∨ suc 𝑖 = 𝑚 ) ) |
16 |
|
neor |
⊢ ( ( suc 𝑖 = 𝑚 ∨ suc 𝑖 ∈ 𝑚 ) ↔ ( suc 𝑖 ≠ 𝑚 → suc 𝑖 ∈ 𝑚 ) ) |
17 |
15 16
|
bitr3i |
⊢ ( ( suc 𝑖 ∈ 𝑚 ∨ suc 𝑖 = 𝑚 ) ↔ ( suc 𝑖 ≠ 𝑚 → suc 𝑖 ∈ 𝑚 ) ) |
18 |
14 17
|
sylib |
⊢ ( suc 𝑖 ∈ suc 𝑚 → ( suc 𝑖 ≠ 𝑚 → suc 𝑖 ∈ 𝑚 ) ) |
19 |
18
|
imp |
⊢ ( ( suc 𝑖 ∈ suc 𝑚 ∧ suc 𝑖 ≠ 𝑚 ) → suc 𝑖 ∈ 𝑚 ) |
20 |
13 19
|
stoic3 |
⊢ ( ( 𝑛 = suc 𝑚 ∧ suc 𝑖 ∈ 𝑛 ∧ suc 𝑖 ≠ 𝑚 ) → suc 𝑖 ∈ 𝑚 ) |
21 |
11 20
|
syl3an3b |
⊢ ( ( 𝑛 = suc 𝑚 ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖 ) → suc 𝑖 ∈ 𝑚 ) |
22 |
21
|
3expb |
⊢ ( ( 𝑛 = suc 𝑚 ∧ ( suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖 ) ) → suc 𝑖 ∈ 𝑚 ) |
23 |
7 10 22
|
syl2an |
⊢ ( ( 𝜂 ∧ 𝜌 ) → suc 𝑖 ∈ 𝑚 ) |