Step |
Hyp |
Ref |
Expression |
1 |
|
bnj570.3 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
2 |
|
bnj570.17 |
⊢ ( 𝜏 ↔ ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) ) |
3 |
|
bnj570.19 |
⊢ ( 𝜂 ↔ ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ) |
4 |
|
bnj570.21 |
⊢ ( 𝜌 ↔ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖 ) ) |
5 |
|
bnj570.24 |
⊢ 𝐾 = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
6 |
|
bnj570.26 |
⊢ 𝐺 = ( 𝑓 ∪ { 〈 𝑚 , 𝐶 〉 } ) |
7 |
|
bnj570.40 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) → 𝐺 Fn 𝑛 ) |
8 |
|
bnj570.30 |
⊢ ( 𝜓′ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑚 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
9 |
|
bnj251 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜌 ) ↔ ( 𝑅 FrSe 𝐴 ∧ ( 𝜏 ∧ ( 𝜂 ∧ 𝜌 ) ) ) ) |
10 |
2
|
simp3bi |
⊢ ( 𝜏 → 𝜓′ ) |
11 |
4
|
simp1bi |
⊢ ( 𝜌 → 𝑖 ∈ ω ) |
12 |
11
|
adantl |
⊢ ( ( 𝜂 ∧ 𝜌 ) → 𝑖 ∈ ω ) |
13 |
3 4
|
bnj563 |
⊢ ( ( 𝜂 ∧ 𝜌 ) → suc 𝑖 ∈ 𝑚 ) |
14 |
12 13
|
jca |
⊢ ( ( 𝜂 ∧ 𝜌 ) → ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑚 ) ) |
15 |
8
|
bnj946 |
⊢ ( 𝜓′ ↔ ∀ 𝑖 ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑚 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
16 |
|
sp |
⊢ ( ∀ 𝑖 ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑚 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) → ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑚 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
17 |
15 16
|
sylbi |
⊢ ( 𝜓′ → ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑚 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
18 |
17
|
imp32 |
⊢ ( ( 𝜓′ ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑚 ) ) → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
19 |
10 14 18
|
syl2an |
⊢ ( ( 𝜏 ∧ ( 𝜂 ∧ 𝜌 ) ) → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
20 |
9 19
|
simplbiim |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜌 ) → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
21 |
7
|
fnfund |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) → Fun 𝐺 ) |
22 |
21
|
bnj721 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜌 ) → Fun 𝐺 ) |
23 |
6
|
bnj931 |
⊢ 𝑓 ⊆ 𝐺 |
24 |
23
|
a1i |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜌 ) → 𝑓 ⊆ 𝐺 ) |
25 |
|
bnj667 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜌 ) → ( 𝜏 ∧ 𝜂 ∧ 𝜌 ) ) |
26 |
2
|
bnj564 |
⊢ ( 𝜏 → dom 𝑓 = 𝑚 ) |
27 |
|
eleq2 |
⊢ ( dom 𝑓 = 𝑚 → ( suc 𝑖 ∈ dom 𝑓 ↔ suc 𝑖 ∈ 𝑚 ) ) |
28 |
27
|
biimpar |
⊢ ( ( dom 𝑓 = 𝑚 ∧ suc 𝑖 ∈ 𝑚 ) → suc 𝑖 ∈ dom 𝑓 ) |
29 |
26 13 28
|
syl2an |
⊢ ( ( 𝜏 ∧ ( 𝜂 ∧ 𝜌 ) ) → suc 𝑖 ∈ dom 𝑓 ) |
30 |
29
|
3impb |
⊢ ( ( 𝜏 ∧ 𝜂 ∧ 𝜌 ) → suc 𝑖 ∈ dom 𝑓 ) |
31 |
25 30
|
syl |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜌 ) → suc 𝑖 ∈ dom 𝑓 ) |
32 |
22 24 31
|
bnj1502 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜌 ) → ( 𝐺 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) |
33 |
2
|
simp1bi |
⊢ ( 𝜏 → 𝑓 Fn 𝑚 ) |
34 |
|
bnj252 |
⊢ ( ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ↔ ( 𝑚 ∈ 𝐷 ∧ ( 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ) ) |
35 |
34
|
simplbi |
⊢ ( ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) → 𝑚 ∈ 𝐷 ) |
36 |
3 35
|
sylbi |
⊢ ( 𝜂 → 𝑚 ∈ 𝐷 ) |
37 |
|
eldifi |
⊢ ( 𝑚 ∈ ( ω ∖ { ∅ } ) → 𝑚 ∈ ω ) |
38 |
37 1
|
eleq2s |
⊢ ( 𝑚 ∈ 𝐷 → 𝑚 ∈ ω ) |
39 |
|
nnord |
⊢ ( 𝑚 ∈ ω → Ord 𝑚 ) |
40 |
36 38 39
|
3syl |
⊢ ( 𝜂 → Ord 𝑚 ) |
41 |
40
|
adantr |
⊢ ( ( 𝜂 ∧ 𝜌 ) → Ord 𝑚 ) |
42 |
41 13
|
jca |
⊢ ( ( 𝜂 ∧ 𝜌 ) → ( Ord 𝑚 ∧ suc 𝑖 ∈ 𝑚 ) ) |
43 |
33 42
|
anim12i |
⊢ ( ( 𝜏 ∧ ( 𝜂 ∧ 𝜌 ) ) → ( 𝑓 Fn 𝑚 ∧ ( Ord 𝑚 ∧ suc 𝑖 ∈ 𝑚 ) ) ) |
44 |
|
fndm |
⊢ ( 𝑓 Fn 𝑚 → dom 𝑓 = 𝑚 ) |
45 |
|
elelsuc |
⊢ ( suc 𝑖 ∈ 𝑚 → suc 𝑖 ∈ suc 𝑚 ) |
46 |
|
ordsucelsuc |
⊢ ( Ord 𝑚 → ( 𝑖 ∈ 𝑚 ↔ suc 𝑖 ∈ suc 𝑚 ) ) |
47 |
46
|
biimpar |
⊢ ( ( Ord 𝑚 ∧ suc 𝑖 ∈ suc 𝑚 ) → 𝑖 ∈ 𝑚 ) |
48 |
45 47
|
sylan2 |
⊢ ( ( Ord 𝑚 ∧ suc 𝑖 ∈ 𝑚 ) → 𝑖 ∈ 𝑚 ) |
49 |
44 48
|
anim12i |
⊢ ( ( 𝑓 Fn 𝑚 ∧ ( Ord 𝑚 ∧ suc 𝑖 ∈ 𝑚 ) ) → ( dom 𝑓 = 𝑚 ∧ 𝑖 ∈ 𝑚 ) ) |
50 |
|
eleq2 |
⊢ ( dom 𝑓 = 𝑚 → ( 𝑖 ∈ dom 𝑓 ↔ 𝑖 ∈ 𝑚 ) ) |
51 |
50
|
biimpar |
⊢ ( ( dom 𝑓 = 𝑚 ∧ 𝑖 ∈ 𝑚 ) → 𝑖 ∈ dom 𝑓 ) |
52 |
43 49 51
|
3syl |
⊢ ( ( 𝜏 ∧ ( 𝜂 ∧ 𝜌 ) ) → 𝑖 ∈ dom 𝑓 ) |
53 |
52
|
3impb |
⊢ ( ( 𝜏 ∧ 𝜂 ∧ 𝜌 ) → 𝑖 ∈ dom 𝑓 ) |
54 |
25 53
|
syl |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜌 ) → 𝑖 ∈ dom 𝑓 ) |
55 |
22 24 54
|
bnj1502 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜌 ) → ( 𝐺 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) ) |
56 |
55
|
iuneq1d |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜌 ) → ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
57 |
20 32 56
|
3eqtr4d |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜌 ) → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
58 |
57 5
|
eqtr4di |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜌 ) → ( 𝐺 ‘ suc 𝑖 ) = 𝐾 ) |