Step |
Hyp |
Ref |
Expression |
1 |
|
bnj571.3 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
2 |
|
bnj571.16 |
⊢ 𝐺 = ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 } ) |
3 |
|
bnj571.17 |
⊢ ( 𝜏 ↔ ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) ) |
4 |
|
bnj571.18 |
⊢ ( 𝜎 ↔ ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚 ) ) |
5 |
|
bnj571.19 |
⊢ ( 𝜂 ↔ ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ) |
6 |
|
bnj571.20 |
⊢ ( 𝜁 ↔ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 = suc 𝑖 ) ) |
7 |
|
bnj571.22 |
⊢ 𝐵 = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
8 |
|
bnj571.23 |
⊢ 𝐶 = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
9 |
|
bnj571.24 |
⊢ 𝐾 = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
10 |
|
bnj571.25 |
⊢ 𝐿 = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
11 |
|
bnj571.26 |
⊢ 𝐺 = ( 𝑓 ∪ { 〈 𝑚 , 𝐶 〉 } ) |
12 |
|
bnj571.29 |
⊢ ( 𝜑′ ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
13 |
|
bnj571.30 |
⊢ ( 𝜓′ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑚 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
14 |
|
bnj571.38 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) → 𝐺 Fn 𝑛 ) |
15 |
|
bnj571.21 |
⊢ ( 𝜌 ↔ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖 ) ) |
16 |
|
bnj571.40 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) → 𝐺 Fn 𝑛 ) |
17 |
|
bnj571.33 |
⊢ ( 𝜓″ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
18 |
|
nfv |
⊢ Ⅎ 𝑖 𝑅 FrSe 𝐴 |
19 |
|
nfv |
⊢ Ⅎ 𝑖 𝑓 Fn 𝑚 |
20 |
|
nfv |
⊢ Ⅎ 𝑖 𝜑′ |
21 |
|
nfra1 |
⊢ Ⅎ 𝑖 ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑚 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
22 |
13 21
|
nfxfr |
⊢ Ⅎ 𝑖 𝜓′ |
23 |
19 20 22
|
nf3an |
⊢ Ⅎ 𝑖 ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) |
24 |
3 23
|
nfxfr |
⊢ Ⅎ 𝑖 𝜏 |
25 |
|
nfv |
⊢ Ⅎ 𝑖 𝜂 |
26 |
18 24 25
|
nf3an |
⊢ Ⅎ 𝑖 ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) |
27 |
|
df-bnj17 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜁 ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ∧ 𝜁 ) ) |
28 |
|
3anass |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ∧ 𝑚 = suc 𝑖 ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ∧ ( ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ∧ 𝑚 = suc 𝑖 ) ) ) |
29 |
|
3anrot |
⊢ ( ( 𝑚 = suc 𝑖 ∧ ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ∧ 𝑚 = suc 𝑖 ) ) |
30 |
|
df-3an |
⊢ ( ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 = suc 𝑖 ) ↔ ( ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ∧ 𝑚 = suc 𝑖 ) ) |
31 |
6 30
|
bitri |
⊢ ( 𝜁 ↔ ( ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ∧ 𝑚 = suc 𝑖 ) ) |
32 |
31
|
anbi2i |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ∧ 𝜁 ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ∧ ( ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ∧ 𝑚 = suc 𝑖 ) ) ) |
33 |
28 29 32
|
3bitr4ri |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ∧ 𝜁 ) ↔ ( 𝑚 = suc 𝑖 ∧ ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ) ) |
34 |
27 33
|
bitri |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜁 ) ↔ ( 𝑚 = suc 𝑖 ∧ ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ) ) |
35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
bnj558 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜁 ) → ( 𝐺 ‘ suc 𝑖 ) = 𝐾 ) |
36 |
34 35
|
sylbir |
⊢ ( ( 𝑚 = suc 𝑖 ∧ ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ) → ( 𝐺 ‘ suc 𝑖 ) = 𝐾 ) |
37 |
36
|
3expib |
⊢ ( 𝑚 = suc 𝑖 → ( ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ) → ( 𝐺 ‘ suc 𝑖 ) = 𝐾 ) ) |
38 |
|
df-bnj17 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜌 ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ∧ 𝜌 ) ) |
39 |
|
3anass |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ∧ 𝑚 ≠ suc 𝑖 ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ∧ ( ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ∧ 𝑚 ≠ suc 𝑖 ) ) ) |
40 |
|
3anrot |
⊢ ( ( 𝑚 ≠ suc 𝑖 ∧ ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ∧ 𝑚 ≠ suc 𝑖 ) ) |
41 |
|
df-3an |
⊢ ( ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖 ) ↔ ( ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ∧ 𝑚 ≠ suc 𝑖 ) ) |
42 |
15 41
|
bitri |
⊢ ( 𝜌 ↔ ( ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ∧ 𝑚 ≠ suc 𝑖 ) ) |
43 |
42
|
anbi2i |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ∧ 𝜌 ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ∧ ( ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ∧ 𝑚 ≠ suc 𝑖 ) ) ) |
44 |
39 40 43
|
3bitr4ri |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ∧ 𝜌 ) ↔ ( 𝑚 ≠ suc 𝑖 ∧ ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ) ) |
45 |
38 44
|
bitri |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜌 ) ↔ ( 𝑚 ≠ suc 𝑖 ∧ ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ) ) |
46 |
1 3 5 15 9 2 16 13
|
bnj570 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜌 ) → ( 𝐺 ‘ suc 𝑖 ) = 𝐾 ) |
47 |
45 46
|
sylbir |
⊢ ( ( 𝑚 ≠ suc 𝑖 ∧ ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ) → ( 𝐺 ‘ suc 𝑖 ) = 𝐾 ) |
48 |
47
|
3expib |
⊢ ( 𝑚 ≠ suc 𝑖 → ( ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ) → ( 𝐺 ‘ suc 𝑖 ) = 𝐾 ) ) |
49 |
37 48
|
pm2.61ine |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ) → ( 𝐺 ‘ suc 𝑖 ) = 𝐾 ) |
50 |
49 9
|
eqtrdi |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ) → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
51 |
50
|
exp32 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) → ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑛 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
52 |
26 51
|
alrimi |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) → ∀ 𝑖 ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑛 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
53 |
17
|
bnj946 |
⊢ ( 𝜓″ ↔ ∀ 𝑖 ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑛 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
54 |
52 53
|
sylibr |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) → 𝜓″ ) |