Step |
Hyp |
Ref |
Expression |
1 |
|
bnj580.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj580.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
3 |
|
bnj580.3 |
⊢ ( 𝜒 ↔ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
4 |
|
bnj580.4 |
⊢ ( 𝜑′ ↔ [ 𝑔 / 𝑓 ] 𝜑 ) |
5 |
|
bnj580.5 |
⊢ ( 𝜓′ ↔ [ 𝑔 / 𝑓 ] 𝜓 ) |
6 |
|
bnj580.6 |
⊢ ( 𝜒′ ↔ [ 𝑔 / 𝑓 ] 𝜒 ) |
7 |
|
bnj580.7 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
8 |
|
bnj580.8 |
⊢ ( 𝜃 ↔ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ) |
9 |
|
bnj580.9 |
⊢ ( 𝜏 ↔ ∀ 𝑘 ∈ 𝑛 ( 𝑘 E 𝑗 → [ 𝑘 / 𝑗 ] 𝜃 ) ) |
10 |
3
|
simp1bi |
⊢ ( 𝜒 → 𝑓 Fn 𝑛 ) |
11 |
3 4 5 6
|
bnj581 |
⊢ ( 𝜒′ ↔ ( 𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′ ) ) |
12 |
11
|
simp1bi |
⊢ ( 𝜒′ → 𝑔 Fn 𝑛 ) |
13 |
10 12
|
bnj240 |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 Fn 𝑛 ∧ 𝑔 Fn 𝑛 ) ) |
14 |
4 1
|
bnj154 |
⊢ ( 𝜑′ ↔ ( 𝑔 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
15 |
|
vex |
⊢ 𝑔 ∈ V |
16 |
2 5 15
|
bnj540 |
⊢ ( 𝜓′ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
17 |
8
|
bnj591 |
⊢ ( [ 𝑘 / 𝑗 ] 𝜃 ↔ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑘 ) ) ) |
18 |
1 2 3 7 14 16 11 8 17 9
|
bnj594 |
⊢ ( ( 𝑗 ∈ 𝑛 ∧ 𝜏 ) → 𝜃 ) |
19 |
18
|
ex |
⊢ ( 𝑗 ∈ 𝑛 → ( 𝜏 → 𝜃 ) ) |
20 |
19
|
rgen |
⊢ ∀ 𝑗 ∈ 𝑛 ( 𝜏 → 𝜃 ) |
21 |
|
vex |
⊢ 𝑛 ∈ V |
22 |
21 9
|
bnj110 |
⊢ ( ( E Fr 𝑛 ∧ ∀ 𝑗 ∈ 𝑛 ( 𝜏 → 𝜃 ) ) → ∀ 𝑗 ∈ 𝑛 𝜃 ) |
23 |
20 22
|
mpan2 |
⊢ ( E Fr 𝑛 → ∀ 𝑗 ∈ 𝑛 𝜃 ) |
24 |
8
|
ralbii |
⊢ ( ∀ 𝑗 ∈ 𝑛 𝜃 ↔ ∀ 𝑗 ∈ 𝑛 ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ) |
25 |
23 24
|
sylib |
⊢ ( E Fr 𝑛 → ∀ 𝑗 ∈ 𝑛 ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ) |
26 |
25
|
r19.21be |
⊢ ∀ 𝑗 ∈ 𝑛 ( E Fr 𝑛 → ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ) |
27 |
7
|
bnj923 |
⊢ ( 𝑛 ∈ 𝐷 → 𝑛 ∈ ω ) |
28 |
|
nnord |
⊢ ( 𝑛 ∈ ω → Ord 𝑛 ) |
29 |
|
ordfr |
⊢ ( Ord 𝑛 → E Fr 𝑛 ) |
30 |
27 28 29
|
3syl |
⊢ ( 𝑛 ∈ 𝐷 → E Fr 𝑛 ) |
31 |
30
|
3ad2ant1 |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → E Fr 𝑛 ) |
32 |
31
|
pm4.71ri |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) ↔ ( E Fr 𝑛 ∧ ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) ) ) |
33 |
32
|
imbi1i |
⊢ ( ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ↔ ( ( E Fr 𝑛 ∧ ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ) |
34 |
|
impexp |
⊢ ( ( ( E Fr 𝑛 ∧ ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ↔ ( E Fr 𝑛 → ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ) ) |
35 |
33 34
|
bitri |
⊢ ( ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ↔ ( E Fr 𝑛 → ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ) ) |
36 |
35
|
ralbii |
⊢ ( ∀ 𝑗 ∈ 𝑛 ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ↔ ∀ 𝑗 ∈ 𝑛 ( E Fr 𝑛 → ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ) ) |
37 |
26 36
|
mpbir |
⊢ ∀ 𝑗 ∈ 𝑛 ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) |
38 |
|
r19.21v |
⊢ ( ∀ 𝑗 ∈ 𝑛 ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ↔ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ∀ 𝑗 ∈ 𝑛 ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ) |
39 |
37 38
|
mpbi |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ∀ 𝑗 ∈ 𝑛 ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) |
40 |
|
eqfnfv |
⊢ ( ( 𝑓 Fn 𝑛 ∧ 𝑔 Fn 𝑛 ) → ( 𝑓 = 𝑔 ↔ ∀ 𝑗 ∈ 𝑛 ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ) |
41 |
40
|
biimprd |
⊢ ( ( 𝑓 Fn 𝑛 ∧ 𝑔 Fn 𝑛 ) → ( ∀ 𝑗 ∈ 𝑛 ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) → 𝑓 = 𝑔 ) ) |
42 |
13 39 41
|
sylc |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → 𝑓 = 𝑔 ) |
43 |
42
|
3expib |
⊢ ( 𝑛 ∈ 𝐷 → ( ( 𝜒 ∧ 𝜒′ ) → 𝑓 = 𝑔 ) ) |
44 |
43
|
alrimivv |
⊢ ( 𝑛 ∈ 𝐷 → ∀ 𝑓 ∀ 𝑔 ( ( 𝜒 ∧ 𝜒′ ) → 𝑓 = 𝑔 ) ) |
45 |
|
sbsbc |
⊢ ( [ 𝑔 / 𝑓 ] 𝜒 ↔ [ 𝑔 / 𝑓 ] 𝜒 ) |
46 |
45
|
anbi2i |
⊢ ( ( 𝜒 ∧ [ 𝑔 / 𝑓 ] 𝜒 ) ↔ ( 𝜒 ∧ [ 𝑔 / 𝑓 ] 𝜒 ) ) |
47 |
46
|
imbi1i |
⊢ ( ( ( 𝜒 ∧ [ 𝑔 / 𝑓 ] 𝜒 ) → 𝑓 = 𝑔 ) ↔ ( ( 𝜒 ∧ [ 𝑔 / 𝑓 ] 𝜒 ) → 𝑓 = 𝑔 ) ) |
48 |
47
|
2albii |
⊢ ( ∀ 𝑓 ∀ 𝑔 ( ( 𝜒 ∧ [ 𝑔 / 𝑓 ] 𝜒 ) → 𝑓 = 𝑔 ) ↔ ∀ 𝑓 ∀ 𝑔 ( ( 𝜒 ∧ [ 𝑔 / 𝑓 ] 𝜒 ) → 𝑓 = 𝑔 ) ) |
49 |
|
nfv |
⊢ Ⅎ 𝑔 𝜒 |
50 |
49
|
mo3 |
⊢ ( ∃* 𝑓 𝜒 ↔ ∀ 𝑓 ∀ 𝑔 ( ( 𝜒 ∧ [ 𝑔 / 𝑓 ] 𝜒 ) → 𝑓 = 𝑔 ) ) |
51 |
6
|
anbi2i |
⊢ ( ( 𝜒 ∧ 𝜒′ ) ↔ ( 𝜒 ∧ [ 𝑔 / 𝑓 ] 𝜒 ) ) |
52 |
51
|
imbi1i |
⊢ ( ( ( 𝜒 ∧ 𝜒′ ) → 𝑓 = 𝑔 ) ↔ ( ( 𝜒 ∧ [ 𝑔 / 𝑓 ] 𝜒 ) → 𝑓 = 𝑔 ) ) |
53 |
52
|
2albii |
⊢ ( ∀ 𝑓 ∀ 𝑔 ( ( 𝜒 ∧ 𝜒′ ) → 𝑓 = 𝑔 ) ↔ ∀ 𝑓 ∀ 𝑔 ( ( 𝜒 ∧ [ 𝑔 / 𝑓 ] 𝜒 ) → 𝑓 = 𝑔 ) ) |
54 |
48 50 53
|
3bitr4i |
⊢ ( ∃* 𝑓 𝜒 ↔ ∀ 𝑓 ∀ 𝑔 ( ( 𝜒 ∧ 𝜒′ ) → 𝑓 = 𝑔 ) ) |
55 |
44 54
|
sylibr |
⊢ ( 𝑛 ∈ 𝐷 → ∃* 𝑓 𝜒 ) |