| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj590.1 | 
							⊢ ( 𝜓  ↔  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							rsp | 
							⊢ ( ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  →  ( 𝑖  ∈  ω  →  ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							sylbi | 
							⊢ ( 𝜓  →  ( 𝑖  ∈  ω  →  ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝐵  =  suc  𝑖  →  ( 𝐵  ∈  𝑛  ↔  suc  𝑖  ∈  𝑛 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fveqeq2 | 
							⊢ ( 𝐵  =  suc  𝑖  →  ( ( 𝑓 ‘ 𝐵 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  ↔  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							imbi12d | 
							⊢ ( 𝐵  =  suc  𝑖  →  ( ( 𝐵  ∈  𝑛  →  ( 𝑓 ‘ 𝐵 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  ↔  ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							imbi2d | 
							⊢ ( 𝐵  =  suc  𝑖  →  ( ( 𝑖  ∈  ω  →  ( 𝐵  ∈  𝑛  →  ( 𝑓 ‘ 𝐵 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  ↔  ( 𝑖  ∈  ω  →  ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) ) )  | 
						
						
							| 8 | 
							
								3 7
							 | 
							imbitrrid | 
							⊢ ( 𝐵  =  suc  𝑖  →  ( 𝜓  →  ( 𝑖  ∈  ω  →  ( 𝐵  ∈  𝑛  →  ( 𝑓 ‘ 𝐵 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							imp | 
							⊢ ( ( 𝐵  =  suc  𝑖  ∧  𝜓 )  →  ( 𝑖  ∈  ω  →  ( 𝐵  ∈  𝑛  →  ( 𝑓 ‘ 𝐵 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) )  |