Step |
Hyp |
Ref |
Expression |
1 |
|
bnj591.1 |
⊢ ( 𝜃 ↔ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ) |
2 |
1
|
sbcbii |
⊢ ( [ 𝑘 / 𝑗 ] 𝜃 ↔ [ 𝑘 / 𝑗 ] ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ) |
3 |
|
vex |
⊢ 𝑘 ∈ V |
4 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑓 ‘ 𝑗 ) = ( 𝑓 ‘ 𝑘 ) ) |
5 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑔 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑘 ) ) |
6 |
4 5
|
eqeq12d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ↔ ( 𝑓 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑘 ) ) ) |
7 |
6
|
imbi2d |
⊢ ( 𝑗 = 𝑘 → ( ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ↔ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑘 ) ) ) ) |
8 |
3 7
|
sbcie |
⊢ ( [ 𝑘 / 𝑗 ] ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ↔ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑘 ) ) ) |
9 |
2 8
|
bitri |
⊢ ( [ 𝑘 / 𝑗 ] 𝜃 ↔ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑘 ) ) ) |