| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj591.1 | 
							⊢ ( 𝜃  ↔  ( ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ )  →  ( 𝑓 ‘ 𝑗 )  =  ( 𝑔 ‘ 𝑗 ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							sbcbii | 
							⊢ ( [ 𝑘  /  𝑗 ] 𝜃  ↔  [ 𝑘  /  𝑗 ] ( ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ )  →  ( 𝑓 ‘ 𝑗 )  =  ( 𝑔 ‘ 𝑗 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							vex | 
							⊢ 𝑘  ∈  V  | 
						
						
							| 4 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑗  =  𝑘  →  ( 𝑓 ‘ 𝑗 )  =  ( 𝑓 ‘ 𝑘 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑗  =  𝑘  →  ( 𝑔 ‘ 𝑗 )  =  ( 𝑔 ‘ 𝑘 ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							eqeq12d | 
							⊢ ( 𝑗  =  𝑘  →  ( ( 𝑓 ‘ 𝑗 )  =  ( 𝑔 ‘ 𝑗 )  ↔  ( 𝑓 ‘ 𝑘 )  =  ( 𝑔 ‘ 𝑘 ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							imbi2d | 
							⊢ ( 𝑗  =  𝑘  →  ( ( ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ )  →  ( 𝑓 ‘ 𝑗 )  =  ( 𝑔 ‘ 𝑗 ) )  ↔  ( ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ )  →  ( 𝑓 ‘ 𝑘 )  =  ( 𝑔 ‘ 𝑘 ) ) ) )  | 
						
						
							| 8 | 
							
								3 7
							 | 
							sbcie | 
							⊢ ( [ 𝑘  /  𝑗 ] ( ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ )  →  ( 𝑓 ‘ 𝑗 )  =  ( 𝑔 ‘ 𝑗 ) )  ↔  ( ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ )  →  ( 𝑓 ‘ 𝑘 )  =  ( 𝑔 ‘ 𝑘 ) ) )  | 
						
						
							| 9 | 
							
								2 8
							 | 
							bitri | 
							⊢ ( [ 𝑘  /  𝑗 ] 𝜃  ↔  ( ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ )  →  ( 𝑓 ‘ 𝑘 )  =  ( 𝑔 ‘ 𝑘 ) ) )  |