| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj594.1 | 
							⊢ ( 𝜑  ↔  ( 𝑓 ‘ ∅ )  =   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj594.2 | 
							⊢ ( 𝜓  ↔  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj594.3 | 
							⊢ ( 𝜒  ↔  ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							bnj594.7 | 
							⊢ 𝐷  =  ( ω  ∖  { ∅ } )  | 
						
						
							| 5 | 
							
								
							 | 
							bnj594.9 | 
							⊢ ( 𝜑′  ↔  ( 𝑔 ‘ ∅ )  =   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							bnj594.10 | 
							⊢ ( 𝜓′  ↔  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑔 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑔 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							bnj594.11 | 
							⊢ ( 𝜒′  ↔  ( 𝑔  Fn  𝑛  ∧  𝜑′  ∧  𝜓′ ) )  | 
						
						
							| 8 | 
							
								
							 | 
							bnj594.15 | 
							⊢ ( 𝜃  ↔  ( ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ )  →  ( 𝑓 ‘ 𝑗 )  =  ( 𝑔 ‘ 𝑗 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							bnj594.16 | 
							⊢ ( [ 𝑘  /  𝑗 ] 𝜃  ↔  ( ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ )  →  ( 𝑓 ‘ 𝑘 )  =  ( 𝑔 ‘ 𝑘 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							bnj594.17 | 
							⊢ ( 𝜏  ↔  ∀ 𝑘  ∈  𝑛 ( 𝑘  E  𝑗  →  [ 𝑘  /  𝑗 ] 𝜃 ) )  | 
						
						
							| 11 | 
							
								3
							 | 
							simp2bi | 
							⊢ ( 𝜒  →  𝜑 )  | 
						
						
							| 12 | 
							
								11 1
							 | 
							sylib | 
							⊢ ( 𝜒  →  ( 𝑓 ‘ ∅ )  =   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 13 | 
							
								7
							 | 
							simp2bi | 
							⊢ ( 𝜒′  →  𝜑′ )  | 
						
						
							| 14 | 
							
								13 5
							 | 
							sylib | 
							⊢ ( 𝜒′  →  ( 𝑔 ‘ ∅ )  =   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							eqtr3 | 
							⊢ ( ( ( 𝑓 ‘ ∅ )  =   pred ( 𝑥 ,  𝐴 ,  𝑅 )  ∧  ( 𝑔 ‘ ∅ )  =   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  →  ( 𝑓 ‘ ∅ )  =  ( 𝑔 ‘ ∅ ) )  | 
						
						
							| 16 | 
							
								12 14 15
							 | 
							syl2an | 
							⊢ ( ( 𝜒  ∧  𝜒′ )  →  ( 𝑓 ‘ ∅ )  =  ( 𝑔 ‘ ∅ ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							3adant1 | 
							⊢ ( ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ )  →  ( 𝑓 ‘ ∅ )  =  ( 𝑔 ‘ ∅ ) )  | 
						
						
							| 18 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑗  =  ∅  →  ( 𝑓 ‘ 𝑗 )  =  ( 𝑓 ‘ ∅ ) )  | 
						
						
							| 19 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑗  =  ∅  →  ( 𝑔 ‘ 𝑗 )  =  ( 𝑔 ‘ ∅ ) )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							eqeq12d | 
							⊢ ( 𝑗  =  ∅  →  ( ( 𝑓 ‘ 𝑗 )  =  ( 𝑔 ‘ 𝑗 )  ↔  ( 𝑓 ‘ ∅ )  =  ( 𝑔 ‘ ∅ ) ) )  | 
						
						
							| 21 | 
							
								17 20
							 | 
							imbitrrid | 
							⊢ ( 𝑗  =  ∅  →  ( ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ )  →  ( 𝑓 ‘ 𝑗 )  =  ( 𝑔 ‘ 𝑗 ) ) )  | 
						
						
							| 22 | 
							
								21 8
							 | 
							sylibr | 
							⊢ ( 𝑗  =  ∅  →  𝜃 )  | 
						
						
							| 23 | 
							
								22
							 | 
							a1d | 
							⊢ ( 𝑗  =  ∅  →  ( ( 𝑗  ∈  𝑛  ∧  𝜏 )  →  𝜃 ) )  | 
						
						
							| 24 | 
							
								
							 | 
							bnj253 | 
							⊢ ( ( 𝑛  ∈  𝐷  ∧  𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ )  ↔  ( ( 𝑛  ∈  𝐷  ∧  𝑛  ∈  𝐷 )  ∧  𝜒  ∧  𝜒′ ) )  | 
						
						
							| 25 | 
							
								
							 | 
							bnj252 | 
							⊢ ( ( 𝑛  ∈  𝐷  ∧  𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ )  ↔  ( 𝑛  ∈  𝐷  ∧  ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							anidm | 
							⊢ ( ( 𝑛  ∈  𝐷  ∧  𝑛  ∈  𝐷 )  ↔  𝑛  ∈  𝐷 )  | 
						
						
							| 27 | 
							
								26
							 | 
							3anbi1i | 
							⊢ ( ( ( 𝑛  ∈  𝐷  ∧  𝑛  ∈  𝐷 )  ∧  𝜒  ∧  𝜒′ )  ↔  ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ ) )  | 
						
						
							| 28 | 
							
								24 25 27
							 | 
							3bitr3i | 
							⊢ ( ( 𝑛  ∈  𝐷  ∧  ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ ) )  ↔  ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ ) )  | 
						
						
							| 29 | 
							
								
							 | 
							df-bnj17 | 
							⊢ ( ( 𝑗  ≠  ∅  ∧  𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝜏 )  ↔  ( ( 𝑗  ≠  ∅  ∧  𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷 )  ∧  𝜏 ) )  | 
						
						
							| 30 | 
							
								10
							 | 
							bnj1095 | 
							⊢ ( 𝜏  →  ∀ 𝑘 𝜏 )  | 
						
						
							| 31 | 
							
								30
							 | 
							bnj1352 | 
							⊢ ( ( ( 𝑗  ≠  ∅  ∧  𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷 )  ∧  𝜏 )  →  ∀ 𝑘 ( ( 𝑗  ≠  ∅  ∧  𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷 )  ∧  𝜏 ) )  | 
						
						
							| 32 | 
							
								29 31
							 | 
							hbxfrbi | 
							⊢ ( ( 𝑗  ≠  ∅  ∧  𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝜏 )  →  ∀ 𝑘 ( 𝑗  ≠  ∅  ∧  𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝜏 ) )  | 
						
						
							| 33 | 
							
								
							 | 
							bnj170 | 
							⊢ ( ( 𝑗  ≠  ∅  ∧  𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷 )  ↔  ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷 )  ∧  𝑗  ≠  ∅ ) )  | 
						
						
							| 34 | 
							
								4
							 | 
							bnj923 | 
							⊢ ( 𝑛  ∈  𝐷  →  𝑛  ∈  ω )  | 
						
						
							| 35 | 
							
								
							 | 
							elnn | 
							⊢ ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  ω )  →  𝑗  ∈  ω )  | 
						
						
							| 36 | 
							
								34 35
							 | 
							sylan2 | 
							⊢ ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷 )  →  𝑗  ∈  ω )  | 
						
						
							| 37 | 
							
								36
							 | 
							anim1i | 
							⊢ ( ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷 )  ∧  𝑗  ≠  ∅ )  →  ( 𝑗  ∈  ω  ∧  𝑗  ≠  ∅ ) )  | 
						
						
							| 38 | 
							
								33 37
							 | 
							sylbi | 
							⊢ ( ( 𝑗  ≠  ∅  ∧  𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷 )  →  ( 𝑗  ∈  ω  ∧  𝑗  ≠  ∅ ) )  | 
						
						
							| 39 | 
							
								
							 | 
							nnsuc | 
							⊢ ( ( 𝑗  ∈  ω  ∧  𝑗  ≠  ∅ )  →  ∃ 𝑘  ∈  ω 𝑗  =  suc  𝑘 )  | 
						
						
							| 40 | 
							
								
							 | 
							rexex | 
							⊢ ( ∃ 𝑘  ∈  ω 𝑗  =  suc  𝑘  →  ∃ 𝑘 𝑗  =  suc  𝑘 )  | 
						
						
							| 41 | 
							
								38 39 40
							 | 
							3syl | 
							⊢ ( ( 𝑗  ≠  ∅  ∧  𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷 )  →  ∃ 𝑘 𝑗  =  suc  𝑘 )  | 
						
						
							| 42 | 
							
								41
							 | 
							bnj721 | 
							⊢ ( ( 𝑗  ≠  ∅  ∧  𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝜏 )  →  ∃ 𝑘 𝑗  =  suc  𝑘 )  | 
						
						
							| 43 | 
							
								32 42
							 | 
							bnj596 | 
							⊢ ( ( 𝑗  ≠  ∅  ∧  𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝜏 )  →  ∃ 𝑘 ( ( 𝑗  ≠  ∅  ∧  𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝜏 )  ∧  𝑗  =  suc  𝑘 ) )  | 
						
						
							| 44 | 
							
								
							 | 
							bnj667 | 
							⊢ ( ( 𝑗  ≠  ∅  ∧  𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝜏 )  →  ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝜏 ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							anim1i | 
							⊢ ( ( ( 𝑗  ≠  ∅  ∧  𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝜏 )  ∧  𝑗  =  suc  𝑘 )  →  ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝜏 )  ∧  𝑗  =  suc  𝑘 ) )  | 
						
						
							| 46 | 
							
								
							 | 
							bnj258 | 
							⊢ ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘  ∧  𝜏 )  ↔  ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝜏 )  ∧  𝑗  =  suc  𝑘 ) )  | 
						
						
							| 47 | 
							
								45 46
							 | 
							sylibr | 
							⊢ ( ( ( 𝑗  ≠  ∅  ∧  𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝜏 )  ∧  𝑗  =  suc  𝑘 )  →  ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘  ∧  𝜏 ) )  | 
						
						
							| 48 | 
							
								
							 | 
							df-bnj17 | 
							⊢ ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘  ∧  𝜏 )  ↔  ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘 )  ∧  𝜏 ) )  | 
						
						
							| 49 | 
							
								
							 | 
							bnj219 | 
							⊢ ( 𝑗  =  suc  𝑘  →  𝑘  E  𝑗 )  | 
						
						
							| 50 | 
							
								49
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘 )  →  𝑘  E  𝑗 )  | 
						
						
							| 51 | 
							
								50
							 | 
							adantr | 
							⊢ ( ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘 )  ∧  𝜏 )  →  𝑘  E  𝑗 )  | 
						
						
							| 52 | 
							
								
							 | 
							vex | 
							⊢ 𝑘  ∈  V  | 
						
						
							| 53 | 
							
								52
							 | 
							bnj216 | 
							⊢ ( 𝑗  =  suc  𝑘  →  𝑘  ∈  𝑗 )  | 
						
						
							| 54 | 
							
								
							 | 
							df-3an | 
							⊢ ( ( 𝑘  ∈  𝑗  ∧  𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷 )  ↔  ( ( 𝑘  ∈  𝑗  ∧  𝑗  ∈  𝑛 )  ∧  𝑛  ∈  𝐷 ) )  | 
						
						
							| 55 | 
							
								
							 | 
							3anrot | 
							⊢ ( ( 𝑘  ∈  𝑗  ∧  𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷 )  ↔  ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑘  ∈  𝑗 ) )  | 
						
						
							| 56 | 
							
								
							 | 
							ancom | 
							⊢ ( ( ( 𝑘  ∈  𝑗  ∧  𝑗  ∈  𝑛 )  ∧  𝑛  ∈  𝐷 )  ↔  ( 𝑛  ∈  𝐷  ∧  ( 𝑘  ∈  𝑗  ∧  𝑗  ∈  𝑛 ) ) )  | 
						
						
							| 57 | 
							
								54 55 56
							 | 
							3bitr3i | 
							⊢ ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑘  ∈  𝑗 )  ↔  ( 𝑛  ∈  𝐷  ∧  ( 𝑘  ∈  𝑗  ∧  𝑗  ∈  𝑛 ) ) )  | 
						
						
							| 58 | 
							
								
							 | 
							eldifi | 
							⊢ ( 𝑛  ∈  ( ω  ∖  { ∅ } )  →  𝑛  ∈  ω )  | 
						
						
							| 59 | 
							
								58 4
							 | 
							eleq2s | 
							⊢ ( 𝑛  ∈  𝐷  →  𝑛  ∈  ω )  | 
						
						
							| 60 | 
							
								
							 | 
							nnord | 
							⊢ ( 𝑛  ∈  ω  →  Ord  𝑛 )  | 
						
						
							| 61 | 
							
								
							 | 
							ordtr1 | 
							⊢ ( Ord  𝑛  →  ( ( 𝑘  ∈  𝑗  ∧  𝑗  ∈  𝑛 )  →  𝑘  ∈  𝑛 ) )  | 
						
						
							| 62 | 
							
								59 60 61
							 | 
							3syl | 
							⊢ ( 𝑛  ∈  𝐷  →  ( ( 𝑘  ∈  𝑗  ∧  𝑗  ∈  𝑛 )  →  𝑘  ∈  𝑛 ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							imp | 
							⊢ ( ( 𝑛  ∈  𝐷  ∧  ( 𝑘  ∈  𝑗  ∧  𝑗  ∈  𝑛 ) )  →  𝑘  ∈  𝑛 )  | 
						
						
							| 64 | 
							
								57 63
							 | 
							sylbi | 
							⊢ ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑘  ∈  𝑗 )  →  𝑘  ∈  𝑛 )  | 
						
						
							| 65 | 
							
								53 64
							 | 
							syl3an3 | 
							⊢ ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘 )  →  𝑘  ∈  𝑛 )  | 
						
						
							| 66 | 
							
								
							 | 
							rsp | 
							⊢ ( ∀ 𝑘  ∈  𝑛 ( 𝑘  E  𝑗  →  [ 𝑘  /  𝑗 ] 𝜃 )  →  ( 𝑘  ∈  𝑛  →  ( 𝑘  E  𝑗  →  [ 𝑘  /  𝑗 ] 𝜃 ) ) )  | 
						
						
							| 67 | 
							
								10 66
							 | 
							sylbi | 
							⊢ ( 𝜏  →  ( 𝑘  ∈  𝑛  →  ( 𝑘  E  𝑗  →  [ 𝑘  /  𝑗 ] 𝜃 ) ) )  | 
						
						
							| 68 | 
							
								65 67
							 | 
							mpan9 | 
							⊢ ( ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘 )  ∧  𝜏 )  →  ( 𝑘  E  𝑗  →  [ 𝑘  /  𝑗 ] 𝜃 ) )  | 
						
						
							| 69 | 
							
								51 68
							 | 
							mpd | 
							⊢ ( ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘 )  ∧  𝜏 )  →  [ 𝑘  /  𝑗 ] 𝜃 )  | 
						
						
							| 70 | 
							
								48 69
							 | 
							sylbi | 
							⊢ ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘  ∧  𝜏 )  →  [ 𝑘  /  𝑗 ] 𝜃 )  | 
						
						
							| 71 | 
							
								70
							 | 
							anim1i | 
							⊢ ( ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘  ∧  𝜏 )  ∧  ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ ) )  →  ( [ 𝑘  /  𝑗 ] 𝜃  ∧  ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ ) ) )  | 
						
						
							| 72 | 
							
								
							 | 
							bnj252 | 
							⊢ ( ( [ 𝑘  /  𝑗 ] 𝜃  ∧  𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ )  ↔  ( [ 𝑘  /  𝑗 ] 𝜃  ∧  ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ ) ) )  | 
						
						
							| 73 | 
							
								71 72
							 | 
							sylibr | 
							⊢ ( ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘  ∧  𝜏 )  ∧  ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ ) )  →  ( [ 𝑘  /  𝑗 ] 𝜃  ∧  𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ ) )  | 
						
						
							| 74 | 
							
								
							 | 
							bnj446 | 
							⊢ ( ( [ 𝑘  /  𝑗 ] 𝜃  ∧  𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ )  ↔  ( ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ )  ∧  [ 𝑘  /  𝑗 ] 𝜃 ) )  | 
						
						
							| 75 | 
							
								
							 | 
							pm3.35 | 
							⊢ ( ( ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ )  ∧  ( ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ )  →  ( 𝑓 ‘ 𝑘 )  =  ( 𝑔 ‘ 𝑘 ) ) )  →  ( 𝑓 ‘ 𝑘 )  =  ( 𝑔 ‘ 𝑘 ) )  | 
						
						
							| 76 | 
							
								9 75
							 | 
							sylan2b | 
							⊢ ( ( ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ )  ∧  [ 𝑘  /  𝑗 ] 𝜃 )  →  ( 𝑓 ‘ 𝑘 )  =  ( 𝑔 ‘ 𝑘 ) )  | 
						
						
							| 77 | 
							
								74 76
							 | 
							sylbi | 
							⊢ ( ( [ 𝑘  /  𝑗 ] 𝜃  ∧  𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ )  →  ( 𝑓 ‘ 𝑘 )  =  ( 𝑔 ‘ 𝑘 ) )  | 
						
						
							| 78 | 
							
								
							 | 
							iuneq1 | 
							⊢ ( ( 𝑓 ‘ 𝑘 )  =  ( 𝑔 ‘ 𝑘 )  →  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑘 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  =  ∪  𝑦  ∈  ( 𝑔 ‘ 𝑘 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 79 | 
							
								73 77 78
							 | 
							3syl | 
							⊢ ( ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘  ∧  𝜏 )  ∧  ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ ) )  →  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑘 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  =  ∪  𝑦  ∈  ( 𝑔 ‘ 𝑘 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 80 | 
							
								
							 | 
							bnj658 | 
							⊢ ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘  ∧  𝜏 )  →  ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘 ) )  | 
						
						
							| 81 | 
							
								3
							 | 
							simp3bi | 
							⊢ ( 𝜒  →  𝜓 )  | 
						
						
							| 82 | 
							
								7
							 | 
							simp3bi | 
							⊢ ( 𝜒′  →  𝜓′ )  | 
						
						
							| 83 | 
							
								81 82
							 | 
							bnj240 | 
							⊢ ( ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ )  →  ( 𝜓  ∧  𝜓′ ) )  | 
						
						
							| 84 | 
							
								80 83
							 | 
							anim12i | 
							⊢ ( ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘  ∧  𝜏 )  ∧  ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ ) )  →  ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘 )  ∧  ( 𝜓  ∧  𝜓′ ) ) )  | 
						
						
							| 85 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝜓  ∧  𝜓′ )  →  𝜓 )  | 
						
						
							| 86 | 
							
								85
							 | 
							anim2i | 
							⊢ ( ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘 )  ∧  ( 𝜓  ∧  𝜓′ ) )  →  ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘 )  ∧  𝜓 ) )  | 
						
						
							| 87 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘 )  →  𝑗  =  suc  𝑘 )  | 
						
						
							| 88 | 
							
								87
							 | 
							anim1i | 
							⊢ ( ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘 )  ∧  𝜓 )  →  ( 𝑗  =  suc  𝑘  ∧  𝜓 ) )  | 
						
						
							| 89 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘 )  ∧  ( 𝑗  =  suc  𝑘  ∧  𝜓 ) )  →  𝑗  ∈  𝑛 )  | 
						
						
							| 90 | 
							
								
							 | 
							df-3an | 
							⊢ ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘 )  ↔  ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷 )  ∧  𝑗  =  suc  𝑘 ) )  | 
						
						
							| 91 | 
							
								90
							 | 
							biancomi | 
							⊢ ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘 )  ↔  ( 𝑗  =  suc  𝑘  ∧  ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷 ) ) )  | 
						
						
							| 92 | 
							
								
							 | 
							elnn | 
							⊢ ( ( 𝑘  ∈  𝑗  ∧  𝑗  ∈  ω )  →  𝑘  ∈  ω )  | 
						
						
							| 93 | 
							
								53 36 92
							 | 
							syl2an | 
							⊢ ( ( 𝑗  =  suc  𝑘  ∧  ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷 ) )  →  𝑘  ∈  ω )  | 
						
						
							| 94 | 
							
								91 93
							 | 
							sylbi | 
							⊢ ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘 )  →  𝑘  ∈  ω )  | 
						
						
							| 95 | 
							
								2
							 | 
							bnj589 | 
							⊢ ( 𝜓  ↔  ∀ 𝑘  ∈  ω ( suc  𝑘  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑘 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑘 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 96 | 
							
								95
							 | 
							bnj590 | 
							⊢ ( ( 𝑗  =  suc  𝑘  ∧  𝜓 )  →  ( 𝑘  ∈  ω  →  ( 𝑗  ∈  𝑛  →  ( 𝑓 ‘ 𝑗 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑘 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) )  | 
						
						
							| 97 | 
							
								94 96
							 | 
							mpan9 | 
							⊢ ( ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘 )  ∧  ( 𝑗  =  suc  𝑘  ∧  𝜓 ) )  →  ( 𝑗  ∈  𝑛  →  ( 𝑓 ‘ 𝑗 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑘 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 98 | 
							
								89 97
							 | 
							mpd | 
							⊢ ( ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘 )  ∧  ( 𝑗  =  suc  𝑘  ∧  𝜓 ) )  →  ( 𝑓 ‘ 𝑗 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑘 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 99 | 
							
								88 98
							 | 
							syldan | 
							⊢ ( ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘 )  ∧  𝜓 )  →  ( 𝑓 ‘ 𝑗 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑘 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 100 | 
							
								84 86 99
							 | 
							3syl | 
							⊢ ( ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘  ∧  𝜏 )  ∧  ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ ) )  →  ( 𝑓 ‘ 𝑗 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑘 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 101 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜓  ∧  𝜓′ )  →  𝜓′ )  | 
						
						
							| 102 | 
							
								101
							 | 
							anim2i | 
							⊢ ( ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘 )  ∧  ( 𝜓  ∧  𝜓′ ) )  →  ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘 )  ∧  𝜓′ ) )  | 
						
						
							| 103 | 
							
								87
							 | 
							anim1i | 
							⊢ ( ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘 )  ∧  𝜓′ )  →  ( 𝑗  =  suc  𝑘  ∧  𝜓′ ) )  | 
						
						
							| 104 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘 )  ∧  ( 𝑗  =  suc  𝑘  ∧  𝜓′ ) )  →  𝑗  ∈  𝑛 )  | 
						
						
							| 105 | 
							
								6
							 | 
							bnj589 | 
							⊢ ( 𝜓′  ↔  ∀ 𝑘  ∈  ω ( suc  𝑘  ∈  𝑛  →  ( 𝑔 ‘ suc  𝑘 )  =  ∪  𝑦  ∈  ( 𝑔 ‘ 𝑘 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 106 | 
							
								105
							 | 
							bnj590 | 
							⊢ ( ( 𝑗  =  suc  𝑘  ∧  𝜓′ )  →  ( 𝑘  ∈  ω  →  ( 𝑗  ∈  𝑛  →  ( 𝑔 ‘ 𝑗 )  =  ∪  𝑦  ∈  ( 𝑔 ‘ 𝑘 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) )  | 
						
						
							| 107 | 
							
								94 106
							 | 
							mpan9 | 
							⊢ ( ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘 )  ∧  ( 𝑗  =  suc  𝑘  ∧  𝜓′ ) )  →  ( 𝑗  ∈  𝑛  →  ( 𝑔 ‘ 𝑗 )  =  ∪  𝑦  ∈  ( 𝑔 ‘ 𝑘 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 108 | 
							
								104 107
							 | 
							mpd | 
							⊢ ( ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘 )  ∧  ( 𝑗  =  suc  𝑘  ∧  𝜓′ ) )  →  ( 𝑔 ‘ 𝑗 )  =  ∪  𝑦  ∈  ( 𝑔 ‘ 𝑘 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 109 | 
							
								103 108
							 | 
							syldan | 
							⊢ ( ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘 )  ∧  𝜓′ )  →  ( 𝑔 ‘ 𝑗 )  =  ∪  𝑦  ∈  ( 𝑔 ‘ 𝑘 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 110 | 
							
								84 102 109
							 | 
							3syl | 
							⊢ ( ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘  ∧  𝜏 )  ∧  ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ ) )  →  ( 𝑔 ‘ 𝑗 )  =  ∪  𝑦  ∈  ( 𝑔 ‘ 𝑘 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 111 | 
							
								79 100 110
							 | 
							3eqtr4d | 
							⊢ ( ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘  ∧  𝜏 )  ∧  ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ ) )  →  ( 𝑓 ‘ 𝑗 )  =  ( 𝑔 ‘ 𝑗 ) )  | 
						
						
							| 112 | 
							
								111
							 | 
							ex | 
							⊢ ( ( 𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝑗  =  suc  𝑘  ∧  𝜏 )  →  ( ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ )  →  ( 𝑓 ‘ 𝑗 )  =  ( 𝑔 ‘ 𝑗 ) ) )  | 
						
						
							| 113 | 
							
								47 112
							 | 
							syl | 
							⊢ ( ( ( 𝑗  ≠  ∅  ∧  𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝜏 )  ∧  𝑗  =  suc  𝑘 )  →  ( ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ )  →  ( 𝑓 ‘ 𝑗 )  =  ( 𝑔 ‘ 𝑗 ) ) )  | 
						
						
							| 114 | 
							
								43 113
							 | 
							bnj593 | 
							⊢ ( ( 𝑗  ≠  ∅  ∧  𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝜏 )  →  ∃ 𝑘 ( ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ )  →  ( 𝑓 ‘ 𝑗 )  =  ( 𝑔 ‘ 𝑗 ) ) )  | 
						
						
							| 115 | 
							
								
							 | 
							bnj258 | 
							⊢ ( ( 𝑗  ≠  ∅  ∧  𝑗  ∈  𝑛  ∧  𝑛  ∈  𝐷  ∧  𝜏 )  ↔  ( ( 𝑗  ≠  ∅  ∧  𝑗  ∈  𝑛  ∧  𝜏 )  ∧  𝑛  ∈  𝐷 ) )  | 
						
						
							| 116 | 
							
								
							 | 
							19.9v | 
							⊢ ( ∃ 𝑘 ( ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ )  →  ( 𝑓 ‘ 𝑗 )  =  ( 𝑔 ‘ 𝑗 ) )  ↔  ( ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ )  →  ( 𝑓 ‘ 𝑗 )  =  ( 𝑔 ‘ 𝑗 ) ) )  | 
						
						
							| 117 | 
							
								114 115 116
							 | 
							3imtr3i | 
							⊢ ( ( ( 𝑗  ≠  ∅  ∧  𝑗  ∈  𝑛  ∧  𝜏 )  ∧  𝑛  ∈  𝐷 )  →  ( ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ )  →  ( 𝑓 ‘ 𝑗 )  =  ( 𝑔 ‘ 𝑗 ) ) )  | 
						
						
							| 118 | 
							
								117
							 | 
							expimpd | 
							⊢ ( ( 𝑗  ≠  ∅  ∧  𝑗  ∈  𝑛  ∧  𝜏 )  →  ( ( 𝑛  ∈  𝐷  ∧  ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ ) )  →  ( 𝑓 ‘ 𝑗 )  =  ( 𝑔 ‘ 𝑗 ) ) )  | 
						
						
							| 119 | 
							
								28 118
							 | 
							biimtrrid | 
							⊢ ( ( 𝑗  ≠  ∅  ∧  𝑗  ∈  𝑛  ∧  𝜏 )  →  ( ( 𝑛  ∈  𝐷  ∧  𝜒  ∧  𝜒′ )  →  ( 𝑓 ‘ 𝑗 )  =  ( 𝑔 ‘ 𝑗 ) ) )  | 
						
						
							| 120 | 
							
								119 8
							 | 
							sylibr | 
							⊢ ( ( 𝑗  ≠  ∅  ∧  𝑗  ∈  𝑛  ∧  𝜏 )  →  𝜃 )  | 
						
						
							| 121 | 
							
								120
							 | 
							3expib | 
							⊢ ( 𝑗  ≠  ∅  →  ( ( 𝑗  ∈  𝑛  ∧  𝜏 )  →  𝜃 ) )  | 
						
						
							| 122 | 
							
								23 121
							 | 
							pm2.61ine | 
							⊢ ( ( 𝑗  ∈  𝑛  ∧  𝜏 )  →  𝜃 )  |