Step |
Hyp |
Ref |
Expression |
1 |
|
bnj594.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj594.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
3 |
|
bnj594.3 |
⊢ ( 𝜒 ↔ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
4 |
|
bnj594.7 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
5 |
|
bnj594.9 |
⊢ ( 𝜑′ ↔ ( 𝑔 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
6 |
|
bnj594.10 |
⊢ ( 𝜓′ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
7 |
|
bnj594.11 |
⊢ ( 𝜒′ ↔ ( 𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′ ) ) |
8 |
|
bnj594.15 |
⊢ ( 𝜃 ↔ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ) |
9 |
|
bnj594.16 |
⊢ ( [ 𝑘 / 𝑗 ] 𝜃 ↔ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑘 ) ) ) |
10 |
|
bnj594.17 |
⊢ ( 𝜏 ↔ ∀ 𝑘 ∈ 𝑛 ( 𝑘 E 𝑗 → [ 𝑘 / 𝑗 ] 𝜃 ) ) |
11 |
3
|
simp2bi |
⊢ ( 𝜒 → 𝜑 ) |
12 |
11 1
|
sylib |
⊢ ( 𝜒 → ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
13 |
7
|
simp2bi |
⊢ ( 𝜒′ → 𝜑′ ) |
14 |
13 5
|
sylib |
⊢ ( 𝜒′ → ( 𝑔 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
15 |
|
eqtr3 |
⊢ ( ( ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) → ( 𝑓 ‘ ∅ ) = ( 𝑔 ‘ ∅ ) ) |
16 |
12 14 15
|
syl2an |
⊢ ( ( 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ ∅ ) = ( 𝑔 ‘ ∅ ) ) |
17 |
16
|
3adant1 |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ ∅ ) = ( 𝑔 ‘ ∅ ) ) |
18 |
|
fveq2 |
⊢ ( 𝑗 = ∅ → ( 𝑓 ‘ 𝑗 ) = ( 𝑓 ‘ ∅ ) ) |
19 |
|
fveq2 |
⊢ ( 𝑗 = ∅ → ( 𝑔 ‘ 𝑗 ) = ( 𝑔 ‘ ∅ ) ) |
20 |
18 19
|
eqeq12d |
⊢ ( 𝑗 = ∅ → ( ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ↔ ( 𝑓 ‘ ∅ ) = ( 𝑔 ‘ ∅ ) ) ) |
21 |
17 20
|
syl5ibr |
⊢ ( 𝑗 = ∅ → ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ) |
22 |
21 8
|
sylibr |
⊢ ( 𝑗 = ∅ → 𝜃 ) |
23 |
22
|
a1d |
⊢ ( 𝑗 = ∅ → ( ( 𝑗 ∈ 𝑛 ∧ 𝜏 ) → 𝜃 ) ) |
24 |
|
bnj253 |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) ↔ ( ( 𝑛 ∈ 𝐷 ∧ 𝑛 ∈ 𝐷 ) ∧ 𝜒 ∧ 𝜒′ ) ) |
25 |
|
bnj252 |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) ↔ ( 𝑛 ∈ 𝐷 ∧ ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) ) ) |
26 |
|
anidm |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝑛 ∈ 𝐷 ) ↔ 𝑛 ∈ 𝐷 ) |
27 |
26
|
3anbi1i |
⊢ ( ( ( 𝑛 ∈ 𝐷 ∧ 𝑛 ∈ 𝐷 ) ∧ 𝜒 ∧ 𝜒′ ) ↔ ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) ) |
28 |
24 25 27
|
3bitr3i |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) ) ↔ ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) ) |
29 |
|
df-bnj17 |
⊢ ( ( 𝑗 ≠ ∅ ∧ 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝜏 ) ↔ ( ( 𝑗 ≠ ∅ ∧ 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ∧ 𝜏 ) ) |
30 |
10
|
bnj1095 |
⊢ ( 𝜏 → ∀ 𝑘 𝜏 ) |
31 |
30
|
bnj1352 |
⊢ ( ( ( 𝑗 ≠ ∅ ∧ 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ∧ 𝜏 ) → ∀ 𝑘 ( ( 𝑗 ≠ ∅ ∧ 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ∧ 𝜏 ) ) |
32 |
29 31
|
hbxfrbi |
⊢ ( ( 𝑗 ≠ ∅ ∧ 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝜏 ) → ∀ 𝑘 ( 𝑗 ≠ ∅ ∧ 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝜏 ) ) |
33 |
|
bnj170 |
⊢ ( ( 𝑗 ≠ ∅ ∧ 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ↔ ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ∧ 𝑗 ≠ ∅ ) ) |
34 |
4
|
bnj923 |
⊢ ( 𝑛 ∈ 𝐷 → 𝑛 ∈ ω ) |
35 |
|
elnn |
⊢ ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ ω ) → 𝑗 ∈ ω ) |
36 |
34 35
|
sylan2 |
⊢ ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → 𝑗 ∈ ω ) |
37 |
36
|
anim1i |
⊢ ( ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ∧ 𝑗 ≠ ∅ ) → ( 𝑗 ∈ ω ∧ 𝑗 ≠ ∅ ) ) |
38 |
33 37
|
sylbi |
⊢ ( ( 𝑗 ≠ ∅ ∧ 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ( 𝑗 ∈ ω ∧ 𝑗 ≠ ∅ ) ) |
39 |
|
nnsuc |
⊢ ( ( 𝑗 ∈ ω ∧ 𝑗 ≠ ∅ ) → ∃ 𝑘 ∈ ω 𝑗 = suc 𝑘 ) |
40 |
|
rexex |
⊢ ( ∃ 𝑘 ∈ ω 𝑗 = suc 𝑘 → ∃ 𝑘 𝑗 = suc 𝑘 ) |
41 |
38 39 40
|
3syl |
⊢ ( ( 𝑗 ≠ ∅ ∧ 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑘 𝑗 = suc 𝑘 ) |
42 |
41
|
bnj721 |
⊢ ( ( 𝑗 ≠ ∅ ∧ 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝜏 ) → ∃ 𝑘 𝑗 = suc 𝑘 ) |
43 |
32 42
|
bnj596 |
⊢ ( ( 𝑗 ≠ ∅ ∧ 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝜏 ) → ∃ 𝑘 ( ( 𝑗 ≠ ∅ ∧ 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝜏 ) ∧ 𝑗 = suc 𝑘 ) ) |
44 |
|
bnj667 |
⊢ ( ( 𝑗 ≠ ∅ ∧ 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝜏 ) → ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝜏 ) ) |
45 |
44
|
anim1i |
⊢ ( ( ( 𝑗 ≠ ∅ ∧ 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝜏 ) ∧ 𝑗 = suc 𝑘 ) → ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝜏 ) ∧ 𝑗 = suc 𝑘 ) ) |
46 |
|
bnj258 |
⊢ ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ∧ 𝜏 ) ↔ ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝜏 ) ∧ 𝑗 = suc 𝑘 ) ) |
47 |
45 46
|
sylibr |
⊢ ( ( ( 𝑗 ≠ ∅ ∧ 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝜏 ) ∧ 𝑗 = suc 𝑘 ) → ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ∧ 𝜏 ) ) |
48 |
|
df-bnj17 |
⊢ ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ∧ 𝜏 ) ↔ ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ) ∧ 𝜏 ) ) |
49 |
|
bnj219 |
⊢ ( 𝑗 = suc 𝑘 → 𝑘 E 𝑗 ) |
50 |
49
|
3ad2ant3 |
⊢ ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ) → 𝑘 E 𝑗 ) |
51 |
50
|
adantr |
⊢ ( ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ) ∧ 𝜏 ) → 𝑘 E 𝑗 ) |
52 |
|
vex |
⊢ 𝑘 ∈ V |
53 |
52
|
bnj216 |
⊢ ( 𝑗 = suc 𝑘 → 𝑘 ∈ 𝑗 ) |
54 |
|
df-3an |
⊢ ( ( 𝑘 ∈ 𝑗 ∧ 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ↔ ( ( 𝑘 ∈ 𝑗 ∧ 𝑗 ∈ 𝑛 ) ∧ 𝑛 ∈ 𝐷 ) ) |
55 |
|
3anrot |
⊢ ( ( 𝑘 ∈ 𝑗 ∧ 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ↔ ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑘 ∈ 𝑗 ) ) |
56 |
|
ancom |
⊢ ( ( ( 𝑘 ∈ 𝑗 ∧ 𝑗 ∈ 𝑛 ) ∧ 𝑛 ∈ 𝐷 ) ↔ ( 𝑛 ∈ 𝐷 ∧ ( 𝑘 ∈ 𝑗 ∧ 𝑗 ∈ 𝑛 ) ) ) |
57 |
54 55 56
|
3bitr3i |
⊢ ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑘 ∈ 𝑗 ) ↔ ( 𝑛 ∈ 𝐷 ∧ ( 𝑘 ∈ 𝑗 ∧ 𝑗 ∈ 𝑛 ) ) ) |
58 |
|
eldifi |
⊢ ( 𝑛 ∈ ( ω ∖ { ∅ } ) → 𝑛 ∈ ω ) |
59 |
58 4
|
eleq2s |
⊢ ( 𝑛 ∈ 𝐷 → 𝑛 ∈ ω ) |
60 |
|
nnord |
⊢ ( 𝑛 ∈ ω → Ord 𝑛 ) |
61 |
|
ordtr1 |
⊢ ( Ord 𝑛 → ( ( 𝑘 ∈ 𝑗 ∧ 𝑗 ∈ 𝑛 ) → 𝑘 ∈ 𝑛 ) ) |
62 |
59 60 61
|
3syl |
⊢ ( 𝑛 ∈ 𝐷 → ( ( 𝑘 ∈ 𝑗 ∧ 𝑗 ∈ 𝑛 ) → 𝑘 ∈ 𝑛 ) ) |
63 |
62
|
imp |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ ( 𝑘 ∈ 𝑗 ∧ 𝑗 ∈ 𝑛 ) ) → 𝑘 ∈ 𝑛 ) |
64 |
57 63
|
sylbi |
⊢ ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑘 ∈ 𝑗 ) → 𝑘 ∈ 𝑛 ) |
65 |
53 64
|
syl3an3 |
⊢ ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ) → 𝑘 ∈ 𝑛 ) |
66 |
|
rsp |
⊢ ( ∀ 𝑘 ∈ 𝑛 ( 𝑘 E 𝑗 → [ 𝑘 / 𝑗 ] 𝜃 ) → ( 𝑘 ∈ 𝑛 → ( 𝑘 E 𝑗 → [ 𝑘 / 𝑗 ] 𝜃 ) ) ) |
67 |
10 66
|
sylbi |
⊢ ( 𝜏 → ( 𝑘 ∈ 𝑛 → ( 𝑘 E 𝑗 → [ 𝑘 / 𝑗 ] 𝜃 ) ) ) |
68 |
65 67
|
mpan9 |
⊢ ( ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ) ∧ 𝜏 ) → ( 𝑘 E 𝑗 → [ 𝑘 / 𝑗 ] 𝜃 ) ) |
69 |
51 68
|
mpd |
⊢ ( ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ) ∧ 𝜏 ) → [ 𝑘 / 𝑗 ] 𝜃 ) |
70 |
48 69
|
sylbi |
⊢ ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ∧ 𝜏 ) → [ 𝑘 / 𝑗 ] 𝜃 ) |
71 |
70
|
anim1i |
⊢ ( ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ∧ 𝜏 ) ∧ ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) ) → ( [ 𝑘 / 𝑗 ] 𝜃 ∧ ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) ) ) |
72 |
|
bnj252 |
⊢ ( ( [ 𝑘 / 𝑗 ] 𝜃 ∧ 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) ↔ ( [ 𝑘 / 𝑗 ] 𝜃 ∧ ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) ) ) |
73 |
71 72
|
sylibr |
⊢ ( ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ∧ 𝜏 ) ∧ ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) ) → ( [ 𝑘 / 𝑗 ] 𝜃 ∧ 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) ) |
74 |
|
bnj446 |
⊢ ( ( [ 𝑘 / 𝑗 ] 𝜃 ∧ 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) ↔ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) ∧ [ 𝑘 / 𝑗 ] 𝜃 ) ) |
75 |
|
pm3.35 |
⊢ ( ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) ∧ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑘 ) ) ) → ( 𝑓 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑘 ) ) |
76 |
9 75
|
sylan2b |
⊢ ( ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) ∧ [ 𝑘 / 𝑗 ] 𝜃 ) → ( 𝑓 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑘 ) ) |
77 |
74 76
|
sylbi |
⊢ ( ( [ 𝑘 / 𝑗 ] 𝜃 ∧ 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑘 ) ) |
78 |
|
iuneq1 |
⊢ ( ( 𝑓 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑘 ) → ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
79 |
73 77 78
|
3syl |
⊢ ( ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ∧ 𝜏 ) ∧ ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) ) → ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
80 |
|
bnj658 |
⊢ ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ∧ 𝜏 ) → ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ) ) |
81 |
3
|
simp3bi |
⊢ ( 𝜒 → 𝜓 ) |
82 |
7
|
simp3bi |
⊢ ( 𝜒′ → 𝜓′ ) |
83 |
81 82
|
bnj240 |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝜓 ∧ 𝜓′ ) ) |
84 |
80 83
|
anim12i |
⊢ ( ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ∧ 𝜏 ) ∧ ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) ) → ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ) ∧ ( 𝜓 ∧ 𝜓′ ) ) ) |
85 |
|
simpl |
⊢ ( ( 𝜓 ∧ 𝜓′ ) → 𝜓 ) |
86 |
85
|
anim2i |
⊢ ( ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ) ∧ ( 𝜓 ∧ 𝜓′ ) ) → ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ) ∧ 𝜓 ) ) |
87 |
|
simp3 |
⊢ ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ) → 𝑗 = suc 𝑘 ) |
88 |
87
|
anim1i |
⊢ ( ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ) ∧ 𝜓 ) → ( 𝑗 = suc 𝑘 ∧ 𝜓 ) ) |
89 |
|
simpl1 |
⊢ ( ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ) ∧ ( 𝑗 = suc 𝑘 ∧ 𝜓 ) ) → 𝑗 ∈ 𝑛 ) |
90 |
|
df-3an |
⊢ ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ) ↔ ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ∧ 𝑗 = suc 𝑘 ) ) |
91 |
90
|
biancomi |
⊢ ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ) ↔ ( 𝑗 = suc 𝑘 ∧ ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ) ) |
92 |
|
elnn |
⊢ ( ( 𝑘 ∈ 𝑗 ∧ 𝑗 ∈ ω ) → 𝑘 ∈ ω ) |
93 |
53 36 92
|
syl2an |
⊢ ( ( 𝑗 = suc 𝑘 ∧ ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ) → 𝑘 ∈ ω ) |
94 |
91 93
|
sylbi |
⊢ ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ) → 𝑘 ∈ ω ) |
95 |
2
|
bnj589 |
⊢ ( 𝜓 ↔ ∀ 𝑘 ∈ ω ( suc 𝑘 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑘 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
96 |
95
|
bnj590 |
⊢ ( ( 𝑗 = suc 𝑘 ∧ 𝜓 ) → ( 𝑘 ∈ ω → ( 𝑗 ∈ 𝑛 → ( 𝑓 ‘ 𝑗 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
97 |
94 96
|
mpan9 |
⊢ ( ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ) ∧ ( 𝑗 = suc 𝑘 ∧ 𝜓 ) ) → ( 𝑗 ∈ 𝑛 → ( 𝑓 ‘ 𝑗 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
98 |
89 97
|
mpd |
⊢ ( ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ) ∧ ( 𝑗 = suc 𝑘 ∧ 𝜓 ) ) → ( 𝑓 ‘ 𝑗 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
99 |
88 98
|
syldan |
⊢ ( ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ) ∧ 𝜓 ) → ( 𝑓 ‘ 𝑗 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
100 |
84 86 99
|
3syl |
⊢ ( ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ∧ 𝜏 ) ∧ ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) ) → ( 𝑓 ‘ 𝑗 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
101 |
|
simpr |
⊢ ( ( 𝜓 ∧ 𝜓′ ) → 𝜓′ ) |
102 |
101
|
anim2i |
⊢ ( ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ) ∧ ( 𝜓 ∧ 𝜓′ ) ) → ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ) ∧ 𝜓′ ) ) |
103 |
87
|
anim1i |
⊢ ( ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ) ∧ 𝜓′ ) → ( 𝑗 = suc 𝑘 ∧ 𝜓′ ) ) |
104 |
|
simpl1 |
⊢ ( ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ) ∧ ( 𝑗 = suc 𝑘 ∧ 𝜓′ ) ) → 𝑗 ∈ 𝑛 ) |
105 |
6
|
bnj589 |
⊢ ( 𝜓′ ↔ ∀ 𝑘 ∈ ω ( suc 𝑘 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑘 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
106 |
105
|
bnj590 |
⊢ ( ( 𝑗 = suc 𝑘 ∧ 𝜓′ ) → ( 𝑘 ∈ ω → ( 𝑗 ∈ 𝑛 → ( 𝑔 ‘ 𝑗 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
107 |
94 106
|
mpan9 |
⊢ ( ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ) ∧ ( 𝑗 = suc 𝑘 ∧ 𝜓′ ) ) → ( 𝑗 ∈ 𝑛 → ( 𝑔 ‘ 𝑗 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
108 |
104 107
|
mpd |
⊢ ( ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ) ∧ ( 𝑗 = suc 𝑘 ∧ 𝜓′ ) ) → ( 𝑔 ‘ 𝑗 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
109 |
103 108
|
syldan |
⊢ ( ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ) ∧ 𝜓′ ) → ( 𝑔 ‘ 𝑗 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
110 |
84 102 109
|
3syl |
⊢ ( ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ∧ 𝜏 ) ∧ ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) ) → ( 𝑔 ‘ 𝑗 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
111 |
79 100 110
|
3eqtr4d |
⊢ ( ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ∧ 𝜏 ) ∧ ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) |
112 |
111
|
ex |
⊢ ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑗 = suc 𝑘 ∧ 𝜏 ) → ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ) |
113 |
47 112
|
syl |
⊢ ( ( ( 𝑗 ≠ ∅ ∧ 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝜏 ) ∧ 𝑗 = suc 𝑘 ) → ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ) |
114 |
43 113
|
bnj593 |
⊢ ( ( 𝑗 ≠ ∅ ∧ 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝜏 ) → ∃ 𝑘 ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ) |
115 |
|
bnj258 |
⊢ ( ( 𝑗 ≠ ∅ ∧ 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝜏 ) ↔ ( ( 𝑗 ≠ ∅ ∧ 𝑗 ∈ 𝑛 ∧ 𝜏 ) ∧ 𝑛 ∈ 𝐷 ) ) |
116 |
|
19.9v |
⊢ ( ∃ 𝑘 ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ↔ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ) |
117 |
114 115 116
|
3imtr3i |
⊢ ( ( ( 𝑗 ≠ ∅ ∧ 𝑗 ∈ 𝑛 ∧ 𝜏 ) ∧ 𝑛 ∈ 𝐷 ) → ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ) |
118 |
117
|
expimpd |
⊢ ( ( 𝑗 ≠ ∅ ∧ 𝑗 ∈ 𝑛 ∧ 𝜏 ) → ( ( 𝑛 ∈ 𝐷 ∧ ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ) |
119 |
28 118
|
syl5bir |
⊢ ( ( 𝑗 ≠ ∅ ∧ 𝑗 ∈ 𝑛 ∧ 𝜏 ) → ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ) |
120 |
119 8
|
sylibr |
⊢ ( ( 𝑗 ≠ ∅ ∧ 𝑗 ∈ 𝑛 ∧ 𝜏 ) → 𝜃 ) |
121 |
120
|
3expib |
⊢ ( 𝑗 ≠ ∅ → ( ( 𝑗 ∈ 𝑛 ∧ 𝜏 ) → 𝜃 ) ) |
122 |
23 121
|
pm2.61ine |
⊢ ( ( 𝑗 ∈ 𝑛 ∧ 𝜏 ) → 𝜃 ) |