Metamath Proof Explorer
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
bnj596.1 |
⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) |
|
|
bnj596.2 |
⊢ ( 𝜑 → ∃ 𝑥 𝜓 ) |
|
Assertion |
bnj596 |
⊢ ( 𝜑 → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
bnj596.1 |
⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) |
2 |
|
bnj596.2 |
⊢ ( 𝜑 → ∃ 𝑥 𝜓 ) |
3 |
2
|
ancli |
⊢ ( 𝜑 → ( 𝜑 ∧ ∃ 𝑥 𝜓 ) ) |
4 |
1
|
nf5i |
⊢ Ⅎ 𝑥 𝜑 |
5 |
4
|
19.42 |
⊢ ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ∃ 𝑥 𝜓 ) ) |
6 |
3 5
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) |