Step |
Hyp |
Ref |
Expression |
1 |
|
bnj60.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
2 |
|
bnj60.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
3 |
|
bnj60.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
4 |
|
bnj60.4 |
⊢ 𝐹 = ∪ 𝐶 |
5 |
1 2 3
|
bnj1497 |
⊢ ∀ 𝑔 ∈ 𝐶 Fun 𝑔 |
6 |
|
eqid |
⊢ ( dom 𝑔 ∩ dom ℎ ) = ( dom 𝑔 ∩ dom ℎ ) |
7 |
1 2 3 6
|
bnj1311 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ) → ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) = ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ) |
8 |
7
|
3expia |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ) → ( ℎ ∈ 𝐶 → ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) = ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ) ) |
9 |
8
|
ralrimiv |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ) → ∀ ℎ ∈ 𝐶 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) = ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ) |
10 |
9
|
ralrimiva |
⊢ ( 𝑅 FrSe 𝐴 → ∀ 𝑔 ∈ 𝐶 ∀ ℎ ∈ 𝐶 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) = ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ) |
11 |
|
biid |
⊢ ( ∀ 𝑔 ∈ 𝐶 Fun 𝑔 ↔ ∀ 𝑔 ∈ 𝐶 Fun 𝑔 ) |
12 |
|
biid |
⊢ ( ( ∀ 𝑔 ∈ 𝐶 Fun 𝑔 ∧ ∀ 𝑔 ∈ 𝐶 ∀ ℎ ∈ 𝐶 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) = ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ) ↔ ( ∀ 𝑔 ∈ 𝐶 Fun 𝑔 ∧ ∀ 𝑔 ∈ 𝐶 ∀ ℎ ∈ 𝐶 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) = ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ) ) |
13 |
11 6 12
|
bnj1383 |
⊢ ( ( ∀ 𝑔 ∈ 𝐶 Fun 𝑔 ∧ ∀ 𝑔 ∈ 𝐶 ∀ ℎ ∈ 𝐶 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) = ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ) → Fun ∪ 𝐶 ) |
14 |
5 10 13
|
sylancr |
⊢ ( 𝑅 FrSe 𝐴 → Fun ∪ 𝐶 ) |
15 |
4
|
funeqi |
⊢ ( Fun 𝐹 ↔ Fun ∪ 𝐶 ) |
16 |
14 15
|
sylibr |
⊢ ( 𝑅 FrSe 𝐴 → Fun 𝐹 ) |
17 |
1 2 3 4
|
bnj1498 |
⊢ ( 𝑅 FrSe 𝐴 → dom 𝐹 = 𝐴 ) |
18 |
16 17
|
bnj1422 |
⊢ ( 𝑅 FrSe 𝐴 → 𝐹 Fn 𝐴 ) |