| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj60.1 | 
							⊢ 𝐵  =  { 𝑑  ∣  ( 𝑑  ⊆  𝐴  ∧  ∀ 𝑥  ∈  𝑑  pred ( 𝑥 ,  𝐴 ,  𝑅 )  ⊆  𝑑 ) }  | 
						
						
							| 2 | 
							
								
							 | 
							bnj60.2 | 
							⊢ 𝑌  =  〈 𝑥 ,  ( 𝑓  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉  | 
						
						
							| 3 | 
							
								
							 | 
							bnj60.3 | 
							⊢ 𝐶  =  { 𝑓  ∣  ∃ 𝑑  ∈  𝐵 ( 𝑓  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑓 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑌 ) ) }  | 
						
						
							| 4 | 
							
								
							 | 
							bnj60.4 | 
							⊢ 𝐹  =  ∪  𝐶  | 
						
						
							| 5 | 
							
								1 2 3
							 | 
							bnj1497 | 
							⊢ ∀ 𝑔  ∈  𝐶 Fun  𝑔  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							⊢ ( dom  𝑔  ∩  dom  ℎ )  =  ( dom  𝑔  ∩  dom  ℎ )  | 
						
						
							| 7 | 
							
								1 2 3 6
							 | 
							bnj1311 | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶  ∧  ℎ  ∈  𝐶 )  →  ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  =  ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							3expia | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶 )  →  ( ℎ  ∈  𝐶  →  ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  =  ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							ralrimiv | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶 )  →  ∀ ℎ  ∈  𝐶 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  =  ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							ralrimiva | 
							⊢ ( 𝑅  FrSe  𝐴  →  ∀ 𝑔  ∈  𝐶 ∀ ℎ  ∈  𝐶 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  =  ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							biid | 
							⊢ ( ∀ 𝑔  ∈  𝐶 Fun  𝑔  ↔  ∀ 𝑔  ∈  𝐶 Fun  𝑔 )  | 
						
						
							| 12 | 
							
								
							 | 
							biid | 
							⊢ ( ( ∀ 𝑔  ∈  𝐶 Fun  𝑔  ∧  ∀ 𝑔  ∈  𝐶 ∀ ℎ  ∈  𝐶 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  =  ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) )  ↔  ( ∀ 𝑔  ∈  𝐶 Fun  𝑔  ∧  ∀ 𝑔  ∈  𝐶 ∀ ℎ  ∈  𝐶 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  =  ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ) )  | 
						
						
							| 13 | 
							
								11 6 12
							 | 
							bnj1383 | 
							⊢ ( ( ∀ 𝑔  ∈  𝐶 Fun  𝑔  ∧  ∀ 𝑔  ∈  𝐶 ∀ ℎ  ∈  𝐶 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  =  ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) )  →  Fun  ∪  𝐶 )  | 
						
						
							| 14 | 
							
								5 10 13
							 | 
							sylancr | 
							⊢ ( 𝑅  FrSe  𝐴  →  Fun  ∪  𝐶 )  | 
						
						
							| 15 | 
							
								4
							 | 
							funeqi | 
							⊢ ( Fun  𝐹  ↔  Fun  ∪  𝐶 )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							sylibr | 
							⊢ ( 𝑅  FrSe  𝐴  →  Fun  𝐹 )  | 
						
						
							| 17 | 
							
								1 2 3 4
							 | 
							bnj1498 | 
							⊢ ( 𝑅  FrSe  𝐴  →  dom  𝐹  =  𝐴 )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							bnj1422 | 
							⊢ ( 𝑅  FrSe  𝐴  →  𝐹  Fn  𝐴 )  |