Metamath Proof Explorer


Theorem bnj60

Description: Well-founded recursion, part 1 of 3. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj60.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
bnj60.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj60.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
bnj60.4 𝐹 = 𝐶
Assertion bnj60 ( 𝑅 FrSe 𝐴𝐹 Fn 𝐴 )

Proof

Step Hyp Ref Expression
1 bnj60.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
2 bnj60.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
3 bnj60.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
4 bnj60.4 𝐹 = 𝐶
5 1 2 3 bnj1497 𝑔𝐶 Fun 𝑔
6 eqid ( dom 𝑔 ∩ dom ) = ( dom 𝑔 ∩ dom )
7 1 2 3 6 bnj1311 ( ( 𝑅 FrSe 𝐴𝑔𝐶𝐶 ) → ( 𝑔 ↾ ( dom 𝑔 ∩ dom ) ) = ( ↾ ( dom 𝑔 ∩ dom ) ) )
8 7 3expia ( ( 𝑅 FrSe 𝐴𝑔𝐶 ) → ( 𝐶 → ( 𝑔 ↾ ( dom 𝑔 ∩ dom ) ) = ( ↾ ( dom 𝑔 ∩ dom ) ) ) )
9 8 ralrimiv ( ( 𝑅 FrSe 𝐴𝑔𝐶 ) → ∀ 𝐶 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ) ) = ( ↾ ( dom 𝑔 ∩ dom ) ) )
10 9 ralrimiva ( 𝑅 FrSe 𝐴 → ∀ 𝑔𝐶𝐶 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ) ) = ( ↾ ( dom 𝑔 ∩ dom ) ) )
11 biid ( ∀ 𝑔𝐶 Fun 𝑔 ↔ ∀ 𝑔𝐶 Fun 𝑔 )
12 biid ( ( ∀ 𝑔𝐶 Fun 𝑔 ∧ ∀ 𝑔𝐶𝐶 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ) ) = ( ↾ ( dom 𝑔 ∩ dom ) ) ) ↔ ( ∀ 𝑔𝐶 Fun 𝑔 ∧ ∀ 𝑔𝐶𝐶 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ) ) = ( ↾ ( dom 𝑔 ∩ dom ) ) ) )
13 11 6 12 bnj1383 ( ( ∀ 𝑔𝐶 Fun 𝑔 ∧ ∀ 𝑔𝐶𝐶 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ) ) = ( ↾ ( dom 𝑔 ∩ dom ) ) ) → Fun 𝐶 )
14 5 10 13 sylancr ( 𝑅 FrSe 𝐴 → Fun 𝐶 )
15 4 funeqi ( Fun 𝐹 ↔ Fun 𝐶 )
16 14 15 sylibr ( 𝑅 FrSe 𝐴 → Fun 𝐹 )
17 1 2 3 4 bnj1498 ( 𝑅 FrSe 𝐴 → dom 𝐹 = 𝐴 )
18 16 17 bnj1422 ( 𝑅 FrSe 𝐴𝐹 Fn 𝐴 )