| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj600.1 | 
							⊢ ( 𝜑  ↔  ( 𝑓 ‘ ∅ )  =   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj600.2 | 
							⊢ ( 𝜓  ↔  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj600.3 | 
							⊢ 𝐷  =  ( ω  ∖  { ∅ } )  | 
						
						
							| 4 | 
							
								
							 | 
							bnj600.4 | 
							⊢ ( 𝜒  ↔  ( ( 𝑅  FrSe  𝐴  ∧  𝑥  ∈  𝐴 )  →  ∃! 𝑓 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							bnj600.5 | 
							⊢ ( 𝜃  ↔  ∀ 𝑚  ∈  𝐷 ( 𝑚  E  𝑛  →  [ 𝑚  /  𝑛 ] 𝜒 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							bnj600.10 | 
							⊢ ( 𝜑′  ↔  [ 𝑚  /  𝑛 ] 𝜑 )  | 
						
						
							| 7 | 
							
								
							 | 
							bnj600.11 | 
							⊢ ( 𝜓′  ↔  [ 𝑚  /  𝑛 ] 𝜓 )  | 
						
						
							| 8 | 
							
								
							 | 
							bnj600.12 | 
							⊢ ( 𝜒′  ↔  [ 𝑚  /  𝑛 ] 𝜒 )  | 
						
						
							| 9 | 
							
								
							 | 
							bnj600.13 | 
							⊢ ( 𝜑″  ↔  [ 𝐺  /  𝑓 ] 𝜑 )  | 
						
						
							| 10 | 
							
								
							 | 
							bnj600.14 | 
							⊢ ( 𝜓″  ↔  [ 𝐺  /  𝑓 ] 𝜓 )  | 
						
						
							| 11 | 
							
								
							 | 
							bnj600.15 | 
							⊢ ( 𝜒″  ↔  [ 𝐺  /  𝑓 ] 𝜒 )  | 
						
						
							| 12 | 
							
								
							 | 
							bnj600.16 | 
							⊢ 𝐺  =  ( 𝑓  ∪  { 〈 𝑚 ,  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑝 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) 〉 } )  | 
						
						
							| 13 | 
							
								
							 | 
							bnj600.17 | 
							⊢ ( 𝜏  ↔  ( 𝑓  Fn  𝑚  ∧  𝜑′  ∧  𝜓′ ) )  | 
						
						
							| 14 | 
							
								
							 | 
							bnj600.18 | 
							⊢ ( 𝜎  ↔  ( 𝑚  ∈  𝐷  ∧  𝑛  =  suc  𝑚  ∧  𝑝  ∈  𝑚 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							bnj600.19 | 
							⊢ ( 𝜂  ↔  ( 𝑚  ∈  𝐷  ∧  𝑛  =  suc  𝑚  ∧  𝑝  ∈  ω  ∧  𝑚  =  suc  𝑝 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							bnj600.20 | 
							⊢ ( 𝜁  ↔  ( 𝑖  ∈  ω  ∧  suc  𝑖  ∈  𝑛  ∧  𝑚  =  suc  𝑖 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							bnj600.21 | 
							⊢ ( 𝜌  ↔  ( 𝑖  ∈  ω  ∧  suc  𝑖  ∈  𝑛  ∧  𝑚  ≠  suc  𝑖 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							bnj600.22 | 
							⊢ 𝐵  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  | 
						
						
							| 19 | 
							
								
							 | 
							bnj600.23 | 
							⊢ 𝐶  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑝 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  | 
						
						
							| 20 | 
							
								
							 | 
							bnj600.24 | 
							⊢ 𝐾  =  ∪  𝑦  ∈  ( 𝐺 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  | 
						
						
							| 21 | 
							
								
							 | 
							bnj600.25 | 
							⊢ 𝐿  =  ∪  𝑦  ∈  ( 𝐺 ‘ 𝑝 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  | 
						
						
							| 22 | 
							
								
							 | 
							bnj600.26 | 
							⊢ 𝐺  =  ( 𝑓  ∪  { 〈 𝑚 ,  𝐶 〉 } )  | 
						
						
							| 23 | 
							
								12
							 | 
							bnj528 | 
							⊢ 𝐺  ∈  V  | 
						
						
							| 24 | 
							
								
							 | 
							vex | 
							⊢ 𝑚  ∈  V  | 
						
						
							| 25 | 
							
								4 6 7 8 24
							 | 
							bnj207 | 
							⊢ ( 𝜒′  ↔  ( ( 𝑅  FrSe  𝐴  ∧  𝑥  ∈  𝐴 )  →  ∃! 𝑓 ( 𝑓  Fn  𝑚  ∧  𝜑′  ∧  𝜓′ ) ) )  | 
						
						
							| 26 | 
							
								1 9 23
							 | 
							bnj609 | 
							⊢ ( 𝜑″  ↔  ( 𝐺 ‘ ∅ )  =   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 27 | 
							
								2 10 23
							 | 
							bnj611 | 
							⊢ ( 𝜓″  ↔  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝐺 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝐺 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 28 | 
							
								3
							 | 
							bnj168 | 
							⊢ ( ( 𝑛  ≠  1o  ∧  𝑛  ∈  𝐷 )  →  ∃ 𝑚  ∈  𝐷 𝑛  =  suc  𝑚 )  | 
						
						
							| 29 | 
							
								
							 | 
							df-rex | 
							⊢ ( ∃ 𝑚  ∈  𝐷 𝑛  =  suc  𝑚  ↔  ∃ 𝑚 ( 𝑚  ∈  𝐷  ∧  𝑛  =  suc  𝑚 ) )  | 
						
						
							| 30 | 
							
								28 29
							 | 
							sylib | 
							⊢ ( ( 𝑛  ≠  1o  ∧  𝑛  ∈  𝐷 )  →  ∃ 𝑚 ( 𝑚  ∈  𝐷  ∧  𝑛  =  suc  𝑚 ) )  | 
						
						
							| 31 | 
							
								3
							 | 
							bnj158 | 
							⊢ ( 𝑚  ∈  𝐷  →  ∃ 𝑝  ∈  ω 𝑚  =  suc  𝑝 )  | 
						
						
							| 32 | 
							
								
							 | 
							df-rex | 
							⊢ ( ∃ 𝑝  ∈  ω 𝑚  =  suc  𝑝  ↔  ∃ 𝑝 ( 𝑝  ∈  ω  ∧  𝑚  =  suc  𝑝 ) )  | 
						
						
							| 33 | 
							
								31 32
							 | 
							sylib | 
							⊢ ( 𝑚  ∈  𝐷  →  ∃ 𝑝 ( 𝑝  ∈  ω  ∧  𝑚  =  suc  𝑝 ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							adantr | 
							⊢ ( ( 𝑚  ∈  𝐷  ∧  𝑛  =  suc  𝑚 )  →  ∃ 𝑝 ( 𝑝  ∈  ω  ∧  𝑚  =  suc  𝑝 ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							ancri | 
							⊢ ( ( 𝑚  ∈  𝐷  ∧  𝑛  =  suc  𝑚 )  →  ( ∃ 𝑝 ( 𝑝  ∈  ω  ∧  𝑚  =  suc  𝑝 )  ∧  ( 𝑚  ∈  𝐷  ∧  𝑛  =  suc  𝑚 ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							bnj534 | 
							⊢ ( ( 𝑚  ∈  𝐷  ∧  𝑛  =  suc  𝑚 )  →  ∃ 𝑝 ( ( 𝑝  ∈  ω  ∧  𝑚  =  suc  𝑝 )  ∧  ( 𝑚  ∈  𝐷  ∧  𝑛  =  suc  𝑚 ) ) )  | 
						
						
							| 37 | 
							
								
							 | 
							bnj432 | 
							⊢ ( ( 𝑚  ∈  𝐷  ∧  𝑛  =  suc  𝑚  ∧  𝑝  ∈  ω  ∧  𝑚  =  suc  𝑝 )  ↔  ( ( 𝑝  ∈  ω  ∧  𝑚  =  suc  𝑝 )  ∧  ( 𝑚  ∈  𝐷  ∧  𝑛  =  suc  𝑚 ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							exbii | 
							⊢ ( ∃ 𝑝 ( 𝑚  ∈  𝐷  ∧  𝑛  =  suc  𝑚  ∧  𝑝  ∈  ω  ∧  𝑚  =  suc  𝑝 )  ↔  ∃ 𝑝 ( ( 𝑝  ∈  ω  ∧  𝑚  =  suc  𝑝 )  ∧  ( 𝑚  ∈  𝐷  ∧  𝑛  =  suc  𝑚 ) ) )  | 
						
						
							| 39 | 
							
								36 38
							 | 
							sylibr | 
							⊢ ( ( 𝑚  ∈  𝐷  ∧  𝑛  =  suc  𝑚 )  →  ∃ 𝑝 ( 𝑚  ∈  𝐷  ∧  𝑛  =  suc  𝑚  ∧  𝑝  ∈  ω  ∧  𝑚  =  suc  𝑝 ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							eximi | 
							⊢ ( ∃ 𝑚 ( 𝑚  ∈  𝐷  ∧  𝑛  =  suc  𝑚 )  →  ∃ 𝑚 ∃ 𝑝 ( 𝑚  ∈  𝐷  ∧  𝑛  =  suc  𝑚  ∧  𝑝  ∈  ω  ∧  𝑚  =  suc  𝑝 ) )  | 
						
						
							| 41 | 
							
								30 40
							 | 
							syl | 
							⊢ ( ( 𝑛  ≠  1o  ∧  𝑛  ∈  𝐷 )  →  ∃ 𝑚 ∃ 𝑝 ( 𝑚  ∈  𝐷  ∧  𝑛  =  suc  𝑚  ∧  𝑝  ∈  ω  ∧  𝑚  =  suc  𝑝 ) )  | 
						
						
							| 42 | 
							
								15
							 | 
							2exbii | 
							⊢ ( ∃ 𝑚 ∃ 𝑝 𝜂  ↔  ∃ 𝑚 ∃ 𝑝 ( 𝑚  ∈  𝐷  ∧  𝑛  =  suc  𝑚  ∧  𝑝  ∈  ω  ∧  𝑚  =  suc  𝑝 ) )  | 
						
						
							| 43 | 
							
								41 42
							 | 
							sylibr | 
							⊢ ( ( 𝑛  ≠  1o  ∧  𝑛  ∈  𝐷 )  →  ∃ 𝑚 ∃ 𝑝 𝜂 )  | 
						
						
							| 44 | 
							
								
							 | 
							rsp | 
							⊢ ( ∀ 𝑚  ∈  𝐷 ( 𝑚  E  𝑛  →  [ 𝑚  /  𝑛 ] 𝜒 )  →  ( 𝑚  ∈  𝐷  →  ( 𝑚  E  𝑛  →  [ 𝑚  /  𝑛 ] 𝜒 ) ) )  | 
						
						
							| 45 | 
							
								5 44
							 | 
							sylbi | 
							⊢ ( 𝜃  →  ( 𝑚  ∈  𝐷  →  ( 𝑚  E  𝑛  →  [ 𝑚  /  𝑛 ] 𝜒 ) ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							3imp | 
							⊢ ( ( 𝜃  ∧  𝑚  ∈  𝐷  ∧  𝑚  E  𝑛 )  →  [ 𝑚  /  𝑛 ] 𝜒 )  | 
						
						
							| 47 | 
							
								46 8
							 | 
							sylibr | 
							⊢ ( ( 𝜃  ∧  𝑚  ∈  𝐷  ∧  𝑚  E  𝑛 )  →  𝜒′ )  | 
						
						
							| 48 | 
							
								1 6 24
							 | 
							bnj523 | 
							⊢ ( 𝜑′  ↔  ( 𝑓 ‘ ∅ )  =   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 49 | 
							
								2 7 24
							 | 
							bnj539 | 
							⊢ ( 𝜓′  ↔  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑚  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 50 | 
							
								48 49 3 12 13 14
							 | 
							bnj544 | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝜏  ∧  𝜎 )  →  𝐺  Fn  𝑛 )  | 
						
						
							| 51 | 
							
								14 15 50
							 | 
							bnj561 | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝜏  ∧  𝜂 )  →  𝐺  Fn  𝑛 )  | 
						
						
							| 52 | 
							
								48 3 12 13 14 50 26
							 | 
							bnj545 | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝜏  ∧  𝜎 )  →  𝜑″ )  | 
						
						
							| 53 | 
							
								14 15 52
							 | 
							bnj562 | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝜏  ∧  𝜂 )  →  𝜑″ )  | 
						
						
							| 54 | 
							
								3 12 13 14 15 16 18 19 20 21 22 48 49 50 17 51 27
							 | 
							bnj571 | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝜏  ∧  𝜂 )  →  𝜓″ )  | 
						
						
							| 55 | 
							
								
							 | 
							biid | 
							⊢ ( [ 𝑧  /  𝑓 ] 𝜑  ↔  [ 𝑧  /  𝑓 ] 𝜑 )  | 
						
						
							| 56 | 
							
								
							 | 
							biid | 
							⊢ ( [ 𝑧  /  𝑓 ] 𝜓  ↔  [ 𝑧  /  𝑓 ] 𝜓 )  | 
						
						
							| 57 | 
							
								
							 | 
							biid | 
							⊢ ( [ 𝐺  /  𝑧 ] [ 𝑧  /  𝑓 ] 𝜑  ↔  [ 𝐺  /  𝑧 ] [ 𝑧  /  𝑓 ] 𝜑 )  | 
						
						
							| 58 | 
							
								
							 | 
							biid | 
							⊢ ( [ 𝐺  /  𝑧 ] [ 𝑧  /  𝑓 ] 𝜓  ↔  [ 𝐺  /  𝑧 ] [ 𝑧  /  𝑓 ] 𝜓 )  | 
						
						
							| 59 | 
							
								5 9 10 13 15 23 25 26 27 43 47 51 53 54 1 2 55 56 57 58
							 | 
							bnj607 | 
							⊢ ( ( 𝑛  ≠  1o  ∧  𝑛  ∈  𝐷  ∧  𝜃 )  →  ( ( 𝑅  FrSe  𝐴  ∧  𝑥  ∈  𝐴 )  →  ∃ 𝑓 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) ) )  | 
						
						
							| 60 | 
							
								1 2 3
							 | 
							bnj579 | 
							⊢ ( 𝑛  ∈  𝐷  →  ∃* 𝑓 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							a1d | 
							⊢ ( 𝑛  ∈  𝐷  →  ( ( 𝑅  FrSe  𝐴  ∧  𝑥  ∈  𝐴 )  →  ∃* 𝑓 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑛  ≠  1o  ∧  𝑛  ∈  𝐷  ∧  𝜃 )  →  ( ( 𝑅  FrSe  𝐴  ∧  𝑥  ∈  𝐴 )  →  ∃* 𝑓 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) ) )  | 
						
						
							| 63 | 
							
								59 62
							 | 
							jcad | 
							⊢ ( ( 𝑛  ≠  1o  ∧  𝑛  ∈  𝐷  ∧  𝜃 )  →  ( ( 𝑅  FrSe  𝐴  ∧  𝑥  ∈  𝐴 )  →  ( ∃ 𝑓 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 )  ∧  ∃* 𝑓 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) ) ) )  | 
						
						
							| 64 | 
							
								
							 | 
							df-eu | 
							⊢ ( ∃! 𝑓 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 )  ↔  ( ∃ 𝑓 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 )  ∧  ∃* 𝑓 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) ) )  | 
						
						
							| 65 | 
							
								63 64
							 | 
							imbitrrdi | 
							⊢ ( ( 𝑛  ≠  1o  ∧  𝑛  ∈  𝐷  ∧  𝜃 )  →  ( ( 𝑅  FrSe  𝐴  ∧  𝑥  ∈  𝐴 )  →  ∃! 𝑓 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) ) )  | 
						
						
							| 66 | 
							
								65 4
							 | 
							sylibr | 
							⊢ ( ( 𝑛  ≠  1o  ∧  𝑛  ∈  𝐷  ∧  𝜃 )  →  𝜒 )  | 
						
						
							| 67 | 
							
								66
							 | 
							3expib | 
							⊢ ( 𝑛  ≠  1o  →  ( ( 𝑛  ∈  𝐷  ∧  𝜃 )  →  𝜒 ) )  |