Step |
Hyp |
Ref |
Expression |
1 |
|
bnj600.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj600.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
3 |
|
bnj600.3 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
4 |
|
bnj600.4 |
⊢ ( 𝜒 ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
5 |
|
bnj600.5 |
⊢ ( 𝜃 ↔ ∀ 𝑚 ∈ 𝐷 ( 𝑚 E 𝑛 → [ 𝑚 / 𝑛 ] 𝜒 ) ) |
6 |
|
bnj600.10 |
⊢ ( 𝜑′ ↔ [ 𝑚 / 𝑛 ] 𝜑 ) |
7 |
|
bnj600.11 |
⊢ ( 𝜓′ ↔ [ 𝑚 / 𝑛 ] 𝜓 ) |
8 |
|
bnj600.12 |
⊢ ( 𝜒′ ↔ [ 𝑚 / 𝑛 ] 𝜒 ) |
9 |
|
bnj600.13 |
⊢ ( 𝜑″ ↔ [ 𝐺 / 𝑓 ] 𝜑 ) |
10 |
|
bnj600.14 |
⊢ ( 𝜓″ ↔ [ 𝐺 / 𝑓 ] 𝜓 ) |
11 |
|
bnj600.15 |
⊢ ( 𝜒″ ↔ [ 𝐺 / 𝑓 ] 𝜒 ) |
12 |
|
bnj600.16 |
⊢ 𝐺 = ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 } ) |
13 |
|
bnj600.17 |
⊢ ( 𝜏 ↔ ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) ) |
14 |
|
bnj600.18 |
⊢ ( 𝜎 ↔ ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚 ) ) |
15 |
|
bnj600.19 |
⊢ ( 𝜂 ↔ ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ) |
16 |
|
bnj600.20 |
⊢ ( 𝜁 ↔ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 = suc 𝑖 ) ) |
17 |
|
bnj600.21 |
⊢ ( 𝜌 ↔ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖 ) ) |
18 |
|
bnj600.22 |
⊢ 𝐵 = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
19 |
|
bnj600.23 |
⊢ 𝐶 = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
20 |
|
bnj600.24 |
⊢ 𝐾 = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
21 |
|
bnj600.25 |
⊢ 𝐿 = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
22 |
|
bnj600.26 |
⊢ 𝐺 = ( 𝑓 ∪ { 〈 𝑚 , 𝐶 〉 } ) |
23 |
12
|
bnj528 |
⊢ 𝐺 ∈ V |
24 |
|
vex |
⊢ 𝑚 ∈ V |
25 |
4 6 7 8 24
|
bnj207 |
⊢ ( 𝜒′ ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) ) ) |
26 |
1 9 23
|
bnj609 |
⊢ ( 𝜑″ ↔ ( 𝐺 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
27 |
2 10 23
|
bnj611 |
⊢ ( 𝜓″ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
28 |
3
|
bnj168 |
⊢ ( ( 𝑛 ≠ 1o ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑚 ∈ 𝐷 𝑛 = suc 𝑚 ) |
29 |
|
df-rex |
⊢ ( ∃ 𝑚 ∈ 𝐷 𝑛 = suc 𝑚 ↔ ∃ 𝑚 ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ) ) |
30 |
28 29
|
sylib |
⊢ ( ( 𝑛 ≠ 1o ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑚 ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ) ) |
31 |
3
|
bnj158 |
⊢ ( 𝑚 ∈ 𝐷 → ∃ 𝑝 ∈ ω 𝑚 = suc 𝑝 ) |
32 |
|
df-rex |
⊢ ( ∃ 𝑝 ∈ ω 𝑚 = suc 𝑝 ↔ ∃ 𝑝 ( 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ) |
33 |
31 32
|
sylib |
⊢ ( 𝑚 ∈ 𝐷 → ∃ 𝑝 ( 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ) → ∃ 𝑝 ( 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ) |
35 |
34
|
ancri |
⊢ ( ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ) → ( ∃ 𝑝 ( 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ∧ ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ) ) ) |
36 |
35
|
bnj534 |
⊢ ( ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ) → ∃ 𝑝 ( ( 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ∧ ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ) ) ) |
37 |
|
bnj432 |
⊢ ( ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ↔ ( ( 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ∧ ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ) ) ) |
38 |
37
|
exbii |
⊢ ( ∃ 𝑝 ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ↔ ∃ 𝑝 ( ( 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ∧ ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ) ) ) |
39 |
36 38
|
sylibr |
⊢ ( ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ) → ∃ 𝑝 ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ) |
40 |
39
|
eximi |
⊢ ( ∃ 𝑚 ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ) → ∃ 𝑚 ∃ 𝑝 ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ) |
41 |
30 40
|
syl |
⊢ ( ( 𝑛 ≠ 1o ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑚 ∃ 𝑝 ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ) |
42 |
15
|
2exbii |
⊢ ( ∃ 𝑚 ∃ 𝑝 𝜂 ↔ ∃ 𝑚 ∃ 𝑝 ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ) |
43 |
41 42
|
sylibr |
⊢ ( ( 𝑛 ≠ 1o ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑚 ∃ 𝑝 𝜂 ) |
44 |
|
rsp |
⊢ ( ∀ 𝑚 ∈ 𝐷 ( 𝑚 E 𝑛 → [ 𝑚 / 𝑛 ] 𝜒 ) → ( 𝑚 ∈ 𝐷 → ( 𝑚 E 𝑛 → [ 𝑚 / 𝑛 ] 𝜒 ) ) ) |
45 |
5 44
|
sylbi |
⊢ ( 𝜃 → ( 𝑚 ∈ 𝐷 → ( 𝑚 E 𝑛 → [ 𝑚 / 𝑛 ] 𝜒 ) ) ) |
46 |
45
|
3imp |
⊢ ( ( 𝜃 ∧ 𝑚 ∈ 𝐷 ∧ 𝑚 E 𝑛 ) → [ 𝑚 / 𝑛 ] 𝜒 ) |
47 |
46 8
|
sylibr |
⊢ ( ( 𝜃 ∧ 𝑚 ∈ 𝐷 ∧ 𝑚 E 𝑛 ) → 𝜒′ ) |
48 |
1 6 24
|
bnj523 |
⊢ ( 𝜑′ ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
49 |
2 7 24
|
bnj539 |
⊢ ( 𝜓′ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑚 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
50 |
48 49 3 12 13 14
|
bnj544 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) → 𝐺 Fn 𝑛 ) |
51 |
14 15 50
|
bnj561 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) → 𝐺 Fn 𝑛 ) |
52 |
48 3 12 13 14 50 26
|
bnj545 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) → 𝜑″ ) |
53 |
14 15 52
|
bnj562 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) → 𝜑″ ) |
54 |
3 12 13 14 15 16 18 19 20 21 22 48 49 50 17 51 27
|
bnj571 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) → 𝜓″ ) |
55 |
|
biid |
⊢ ( [ 𝑧 / 𝑓 ] 𝜑 ↔ [ 𝑧 / 𝑓 ] 𝜑 ) |
56 |
|
biid |
⊢ ( [ 𝑧 / 𝑓 ] 𝜓 ↔ [ 𝑧 / 𝑓 ] 𝜓 ) |
57 |
|
biid |
⊢ ( [ 𝐺 / 𝑧 ] [ 𝑧 / 𝑓 ] 𝜑 ↔ [ 𝐺 / 𝑧 ] [ 𝑧 / 𝑓 ] 𝜑 ) |
58 |
|
biid |
⊢ ( [ 𝐺 / 𝑧 ] [ 𝑧 / 𝑓 ] 𝜓 ↔ [ 𝐺 / 𝑧 ] [ 𝑧 / 𝑓 ] 𝜓 ) |
59 |
5 9 10 13 15 23 25 26 27 43 47 51 53 54 1 2 55 56 57 58
|
bnj607 |
⊢ ( ( 𝑛 ≠ 1o ∧ 𝑛 ∈ 𝐷 ∧ 𝜃 ) → ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
60 |
1 2 3
|
bnj579 |
⊢ ( 𝑛 ∈ 𝐷 → ∃* 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
61 |
60
|
a1d |
⊢ ( 𝑛 ∈ 𝐷 → ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃* 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
62 |
61
|
3ad2ant2 |
⊢ ( ( 𝑛 ≠ 1o ∧ 𝑛 ∈ 𝐷 ∧ 𝜃 ) → ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃* 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
63 |
59 62
|
jcad |
⊢ ( ( 𝑛 ≠ 1o ∧ 𝑛 ∈ 𝐷 ∧ 𝜃 ) → ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ∧ ∃* 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) ) |
64 |
|
df-eu |
⊢ ( ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ↔ ( ∃ 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ∧ ∃* 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
65 |
63 64
|
syl6ibr |
⊢ ( ( 𝑛 ≠ 1o ∧ 𝑛 ∈ 𝐷 ∧ 𝜃 ) → ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
66 |
65 4
|
sylibr |
⊢ ( ( 𝑛 ≠ 1o ∧ 𝑛 ∈ 𝐷 ∧ 𝜃 ) → 𝜒 ) |
67 |
66
|
3expib |
⊢ ( 𝑛 ≠ 1o → ( ( 𝑛 ∈ 𝐷 ∧ 𝜃 ) → 𝜒 ) ) |