Metamath Proof Explorer


Theorem bnj601

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj601.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
bnj601.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj601.3 𝐷 = ( ω ∖ { ∅ } )
bnj601.4 ( 𝜒 ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
bnj601.5 ( 𝜃 ↔ ∀ 𝑚𝐷 ( 𝑚 E 𝑛[ 𝑚 / 𝑛 ] 𝜒 ) )
Assertion bnj601 ( 𝑛 ≠ 1o → ( ( 𝑛𝐷𝜃 ) → 𝜒 ) )

Proof

Step Hyp Ref Expression
1 bnj601.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
2 bnj601.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
3 bnj601.3 𝐷 = ( ω ∖ { ∅ } )
4 bnj601.4 ( 𝜒 ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
5 bnj601.5 ( 𝜃 ↔ ∀ 𝑚𝐷 ( 𝑚 E 𝑛[ 𝑚 / 𝑛 ] 𝜒 ) )
6 biid ( [ 𝑚 / 𝑛 ] 𝜑[ 𝑚 / 𝑛 ] 𝜑 )
7 biid ( [ 𝑚 / 𝑛 ] 𝜓[ 𝑚 / 𝑛 ] 𝜓 )
8 biid ( [ 𝑚 / 𝑛 ] 𝜒[ 𝑚 / 𝑛 ] 𝜒 )
9 bnj602 ( 𝑦 = 𝑧 → pred ( 𝑦 , 𝐴 , 𝑅 ) = pred ( 𝑧 , 𝐴 , 𝑅 ) )
10 9 cbviunv 𝑦 ∈ ( 𝑓𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = 𝑧 ∈ ( 𝑓𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 )
11 10 opeq2i 𝑚 , 𝑦 ∈ ( 𝑓𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⟩ = ⟨ 𝑚 , 𝑧 ∈ ( 𝑓𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) ⟩
12 11 sneqi { ⟨ 𝑚 , 𝑦 ∈ ( 𝑓𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⟩ } = { ⟨ 𝑚 , 𝑧 ∈ ( 𝑓𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) ⟩ }
13 12 uneq2i ( 𝑓 ∪ { ⟨ 𝑚 , 𝑦 ∈ ( 𝑓𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⟩ } ) = ( 𝑓 ∪ { ⟨ 𝑚 , 𝑧 ∈ ( 𝑓𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) ⟩ } )
14 dfsbcq ( ( 𝑓 ∪ { ⟨ 𝑚 , 𝑦 ∈ ( 𝑓𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⟩ } ) = ( 𝑓 ∪ { ⟨ 𝑚 , 𝑧 ∈ ( 𝑓𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) ⟩ } ) → ( [ ( 𝑓 ∪ { ⟨ 𝑚 , 𝑦 ∈ ( 𝑓𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⟩ } ) / 𝑓 ] 𝜑[ ( 𝑓 ∪ { ⟨ 𝑚 , 𝑧 ∈ ( 𝑓𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) ⟩ } ) / 𝑓 ] 𝜑 ) )
15 13 14 ax-mp ( [ ( 𝑓 ∪ { ⟨ 𝑚 , 𝑦 ∈ ( 𝑓𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⟩ } ) / 𝑓 ] 𝜑[ ( 𝑓 ∪ { ⟨ 𝑚 , 𝑧 ∈ ( 𝑓𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) ⟩ } ) / 𝑓 ] 𝜑 )
16 dfsbcq ( ( 𝑓 ∪ { ⟨ 𝑚 , 𝑦 ∈ ( 𝑓𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⟩ } ) = ( 𝑓 ∪ { ⟨ 𝑚 , 𝑧 ∈ ( 𝑓𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) ⟩ } ) → ( [ ( 𝑓 ∪ { ⟨ 𝑚 , 𝑦 ∈ ( 𝑓𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⟩ } ) / 𝑓 ] 𝜓[ ( 𝑓 ∪ { ⟨ 𝑚 , 𝑧 ∈ ( 𝑓𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) ⟩ } ) / 𝑓 ] 𝜓 ) )
17 13 16 ax-mp ( [ ( 𝑓 ∪ { ⟨ 𝑚 , 𝑦 ∈ ( 𝑓𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⟩ } ) / 𝑓 ] 𝜓[ ( 𝑓 ∪ { ⟨ 𝑚 , 𝑧 ∈ ( 𝑓𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) ⟩ } ) / 𝑓 ] 𝜓 )
18 dfsbcq ( ( 𝑓 ∪ { ⟨ 𝑚 , 𝑦 ∈ ( 𝑓𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⟩ } ) = ( 𝑓 ∪ { ⟨ 𝑚 , 𝑧 ∈ ( 𝑓𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) ⟩ } ) → ( [ ( 𝑓 ∪ { ⟨ 𝑚 , 𝑦 ∈ ( 𝑓𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⟩ } ) / 𝑓 ] 𝜒[ ( 𝑓 ∪ { ⟨ 𝑚 , 𝑧 ∈ ( 𝑓𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) ⟩ } ) / 𝑓 ] 𝜒 ) )
19 13 18 ax-mp ( [ ( 𝑓 ∪ { ⟨ 𝑚 , 𝑦 ∈ ( 𝑓𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⟩ } ) / 𝑓 ] 𝜒[ ( 𝑓 ∪ { ⟨ 𝑚 , 𝑧 ∈ ( 𝑓𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) ⟩ } ) / 𝑓 ] 𝜒 )
20 13 eqcomi ( 𝑓 ∪ { ⟨ 𝑚 , 𝑧 ∈ ( 𝑓𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) ⟩ } ) = ( 𝑓 ∪ { ⟨ 𝑚 , 𝑦 ∈ ( 𝑓𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⟩ } )
21 biid ( ( 𝑓 Fn 𝑚[ 𝑚 / 𝑛 ] 𝜑[ 𝑚 / 𝑛 ] 𝜓 ) ↔ ( 𝑓 Fn 𝑚[ 𝑚 / 𝑛 ] 𝜑[ 𝑚 / 𝑛 ] 𝜓 ) )
22 biid ( ( 𝑚𝐷𝑛 = suc 𝑚𝑝𝑚 ) ↔ ( 𝑚𝐷𝑛 = suc 𝑚𝑝𝑚 ) )
23 biid ( ( 𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ↔ ( 𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) )
24 biid ( ( 𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖 ) ↔ ( 𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖 ) )
25 biid ( ( 𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 ≠ suc 𝑖 ) ↔ ( 𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 ≠ suc 𝑖 ) )
26 eqid 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 )
27 eqid 𝑦 ∈ ( 𝑓𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = 𝑦 ∈ ( 𝑓𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 )
28 eqid 𝑦 ∈ ( ( 𝑓 ∪ { ⟨ 𝑚 , 𝑧 ∈ ( 𝑓𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) ⟩ } ) ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = 𝑦 ∈ ( ( 𝑓 ∪ { ⟨ 𝑚 , 𝑧 ∈ ( 𝑓𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) ⟩ } ) ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 )
29 eqid 𝑦 ∈ ( ( 𝑓 ∪ { ⟨ 𝑚 , 𝑧 ∈ ( 𝑓𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) ⟩ } ) ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = 𝑦 ∈ ( ( 𝑓 ∪ { ⟨ 𝑚 , 𝑧 ∈ ( 𝑓𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) ⟩ } ) ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 )
30 1 2 3 4 5 6 7 8 15 17 19 20 21 22 23 24 25 26 27 28 29 20 bnj600 ( 𝑛 ≠ 1o → ( ( 𝑛𝐷𝜃 ) → 𝜒 ) )