Description: Equality theorem for the _pred function constant. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bnj602 | ⊢ ( 𝑋 = 𝑌 → pred ( 𝑋 , 𝐴 , 𝑅 ) = pred ( 𝑌 , 𝐴 , 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 | ⊢ ( 𝑋 = 𝑌 → ( 𝑦 𝑅 𝑋 ↔ 𝑦 𝑅 𝑌 ) ) | |
2 | 1 | rabbidv | ⊢ ( 𝑋 = 𝑌 → { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } = { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑌 } ) |
3 | df-bnj14 | ⊢ pred ( 𝑋 , 𝐴 , 𝑅 ) = { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } | |
4 | df-bnj14 | ⊢ pred ( 𝑌 , 𝐴 , 𝑅 ) = { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑌 } | |
5 | 2 3 4 | 3eqtr4g | ⊢ ( 𝑋 = 𝑌 → pred ( 𝑋 , 𝐴 , 𝑅 ) = pred ( 𝑌 , 𝐴 , 𝑅 ) ) |