Metamath Proof Explorer


Theorem bnj602

Description: Equality theorem for the _pred function constant. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj602 ( 𝑋 = 𝑌 → pred ( 𝑋 , 𝐴 , 𝑅 ) = pred ( 𝑌 , 𝐴 , 𝑅 ) )

Proof

Step Hyp Ref Expression
1 breq2 ( 𝑋 = 𝑌 → ( 𝑦 𝑅 𝑋𝑦 𝑅 𝑌 ) )
2 1 rabbidv ( 𝑋 = 𝑌 → { 𝑦𝐴𝑦 𝑅 𝑋 } = { 𝑦𝐴𝑦 𝑅 𝑌 } )
3 df-bnj14 pred ( 𝑋 , 𝐴 , 𝑅 ) = { 𝑦𝐴𝑦 𝑅 𝑋 }
4 df-bnj14 pred ( 𝑌 , 𝐴 , 𝑅 ) = { 𝑦𝐴𝑦 𝑅 𝑌 }
5 2 3 4 3eqtr4g ( 𝑋 = 𝑌 → pred ( 𝑋 , 𝐴 , 𝑅 ) = pred ( 𝑌 , 𝐴 , 𝑅 ) )