Step |
Hyp |
Ref |
Expression |
1 |
|
bnj605.5 |
⊢ ( 𝜃 ↔ ∀ 𝑚 ∈ 𝐷 ( 𝑚 E 𝑛 → [ 𝑚 / 𝑛 ] 𝜒 ) ) |
2 |
|
bnj605.13 |
⊢ ( 𝜑″ ↔ [ 𝑓 / 𝑓 ] 𝜑 ) |
3 |
|
bnj605.14 |
⊢ ( 𝜓″ ↔ [ 𝑓 / 𝑓 ] 𝜓 ) |
4 |
|
bnj605.17 |
⊢ ( 𝜏 ↔ ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) ) |
5 |
|
bnj605.19 |
⊢ ( 𝜂 ↔ ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ) |
6 |
|
bnj605.28 |
⊢ 𝑓 ∈ V |
7 |
|
bnj605.31 |
⊢ ( 𝜒′ ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) ) ) |
8 |
|
bnj605.32 |
⊢ ( 𝜑″ ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
9 |
|
bnj605.33 |
⊢ ( 𝜓″ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
10 |
|
bnj605.37 |
⊢ ( ( 𝑛 ≠ 1o ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑚 ∃ 𝑝 𝜂 ) |
11 |
|
bnj605.38 |
⊢ ( ( 𝜃 ∧ 𝑚 ∈ 𝐷 ∧ 𝑚 E 𝑛 ) → 𝜒′ ) |
12 |
|
bnj605.41 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) → 𝑓 Fn 𝑛 ) |
13 |
|
bnj605.42 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) → 𝜑″ ) |
14 |
|
bnj605.43 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) → 𝜓″ ) |
15 |
10
|
anim1i |
⊢ ( ( ( 𝑛 ≠ 1o ∧ 𝑛 ∈ 𝐷 ) ∧ 𝜃 ) → ( ∃ 𝑚 ∃ 𝑝 𝜂 ∧ 𝜃 ) ) |
16 |
|
nfv |
⊢ Ⅎ 𝑝 𝜃 |
17 |
16
|
19.41 |
⊢ ( ∃ 𝑝 ( 𝜂 ∧ 𝜃 ) ↔ ( ∃ 𝑝 𝜂 ∧ 𝜃 ) ) |
18 |
17
|
exbii |
⊢ ( ∃ 𝑚 ∃ 𝑝 ( 𝜂 ∧ 𝜃 ) ↔ ∃ 𝑚 ( ∃ 𝑝 𝜂 ∧ 𝜃 ) ) |
19 |
1
|
bnj1095 |
⊢ ( 𝜃 → ∀ 𝑚 𝜃 ) |
20 |
19
|
nf5i |
⊢ Ⅎ 𝑚 𝜃 |
21 |
20
|
19.41 |
⊢ ( ∃ 𝑚 ( ∃ 𝑝 𝜂 ∧ 𝜃 ) ↔ ( ∃ 𝑚 ∃ 𝑝 𝜂 ∧ 𝜃 ) ) |
22 |
18 21
|
bitr2i |
⊢ ( ( ∃ 𝑚 ∃ 𝑝 𝜂 ∧ 𝜃 ) ↔ ∃ 𝑚 ∃ 𝑝 ( 𝜂 ∧ 𝜃 ) ) |
23 |
15 22
|
sylib |
⊢ ( ( ( 𝑛 ≠ 1o ∧ 𝑛 ∈ 𝐷 ) ∧ 𝜃 ) → ∃ 𝑚 ∃ 𝑝 ( 𝜂 ∧ 𝜃 ) ) |
24 |
5
|
bnj1232 |
⊢ ( 𝜂 → 𝑚 ∈ 𝐷 ) |
25 |
|
bnj219 |
⊢ ( 𝑛 = suc 𝑚 → 𝑚 E 𝑛 ) |
26 |
5 25
|
bnj770 |
⊢ ( 𝜂 → 𝑚 E 𝑛 ) |
27 |
24 26
|
jca |
⊢ ( 𝜂 → ( 𝑚 ∈ 𝐷 ∧ 𝑚 E 𝑛 ) ) |
28 |
27
|
anim1i |
⊢ ( ( 𝜂 ∧ 𝜃 ) → ( ( 𝑚 ∈ 𝐷 ∧ 𝑚 E 𝑛 ) ∧ 𝜃 ) ) |
29 |
|
bnj170 |
⊢ ( ( 𝜃 ∧ 𝑚 ∈ 𝐷 ∧ 𝑚 E 𝑛 ) ↔ ( ( 𝑚 ∈ 𝐷 ∧ 𝑚 E 𝑛 ) ∧ 𝜃 ) ) |
30 |
28 29
|
sylibr |
⊢ ( ( 𝜂 ∧ 𝜃 ) → ( 𝜃 ∧ 𝑚 ∈ 𝐷 ∧ 𝑚 E 𝑛 ) ) |
31 |
30 11
|
syl |
⊢ ( ( 𝜂 ∧ 𝜃 ) → 𝜒′ ) |
32 |
|
simpl |
⊢ ( ( 𝜂 ∧ 𝜃 ) → 𝜂 ) |
33 |
31 32
|
jca |
⊢ ( ( 𝜂 ∧ 𝜃 ) → ( 𝜒′ ∧ 𝜂 ) ) |
34 |
33
|
2eximi |
⊢ ( ∃ 𝑚 ∃ 𝑝 ( 𝜂 ∧ 𝜃 ) → ∃ 𝑚 ∃ 𝑝 ( 𝜒′ ∧ 𝜂 ) ) |
35 |
|
bnj248 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂 ) ↔ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜒′ ) ∧ 𝜂 ) ) |
36 |
|
pm3.35 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) ) ) → ∃! 𝑓 ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) ) |
37 |
7 36
|
sylan2b |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜒′ ) → ∃! 𝑓 ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) ) |
38 |
|
euex |
⊢ ( ∃! 𝑓 ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) → ∃ 𝑓 ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) ) |
39 |
37 38
|
syl |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜒′ ) → ∃ 𝑓 ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) ) |
40 |
39 4
|
bnj1198 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜒′ ) → ∃ 𝑓 𝜏 ) |
41 |
35 40
|
bnj832 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂 ) → ∃ 𝑓 𝜏 ) |
42 |
12 13 14
|
3jca |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) → ( 𝑓 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″ ) ) |
43 |
42
|
3com23 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜂 ∧ 𝜏 ) → ( 𝑓 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″ ) ) |
44 |
43
|
3expia |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜂 ) → ( 𝜏 → ( 𝑓 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″ ) ) ) |
45 |
44
|
eximdv |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜂 ) → ( ∃ 𝑓 𝜏 → ∃ 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″ ) ) ) |
46 |
45
|
ad4ant14 |
⊢ ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜒′ ) ∧ 𝜂 ) → ( ∃ 𝑓 𝜏 → ∃ 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″ ) ) ) |
47 |
35 46
|
sylbi |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂 ) → ( ∃ 𝑓 𝜏 → ∃ 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″ ) ) ) |
48 |
41 47
|
mpd |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂 ) → ∃ 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″ ) ) |
49 |
|
bnj432 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂 ) ↔ ( ( 𝜒′ ∧ 𝜂 ) ∧ ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) ) |
50 |
|
biid |
⊢ ( 𝑓 Fn 𝑛 ↔ 𝑓 Fn 𝑛 ) |
51 |
|
sbcid |
⊢ ( [ 𝑓 / 𝑓 ] 𝜑 ↔ 𝜑 ) |
52 |
2 51
|
bitri |
⊢ ( 𝜑″ ↔ 𝜑 ) |
53 |
|
sbcid |
⊢ ( [ 𝑓 / 𝑓 ] 𝜓 ↔ 𝜓 ) |
54 |
3 53
|
bitri |
⊢ ( 𝜓″ ↔ 𝜓 ) |
55 |
50 52 54
|
3anbi123i |
⊢ ( ( 𝑓 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″ ) ↔ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
56 |
55
|
exbii |
⊢ ( ∃ 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″ ) ↔ ∃ 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
57 |
48 49 56
|
3imtr3i |
⊢ ( ( ( 𝜒′ ∧ 𝜂 ) ∧ ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ∃ 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
58 |
57
|
ex |
⊢ ( ( 𝜒′ ∧ 𝜂 ) → ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
59 |
58
|
exlimivv |
⊢ ( ∃ 𝑚 ∃ 𝑝 ( 𝜒′ ∧ 𝜂 ) → ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
60 |
23 34 59
|
3syl |
⊢ ( ( ( 𝑛 ≠ 1o ∧ 𝑛 ∈ 𝐷 ) ∧ 𝜃 ) → ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
61 |
60
|
3impa |
⊢ ( ( 𝑛 ≠ 1o ∧ 𝑛 ∈ 𝐷 ∧ 𝜃 ) → ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |