Step |
Hyp |
Ref |
Expression |
1 |
|
bnj607.5 |
⊢ ( 𝜃 ↔ ∀ 𝑚 ∈ 𝐷 ( 𝑚 E 𝑛 → [ 𝑚 / 𝑛 ] 𝜒 ) ) |
2 |
|
bnj607.13 |
⊢ ( 𝜑″ ↔ [ 𝐺 / 𝑓 ] 𝜑 ) |
3 |
|
bnj607.14 |
⊢ ( 𝜓″ ↔ [ 𝐺 / 𝑓 ] 𝜓 ) |
4 |
|
bnj607.17 |
⊢ ( 𝜏 ↔ ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) ) |
5 |
|
bnj607.19 |
⊢ ( 𝜂 ↔ ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ) |
6 |
|
bnj607.28 |
⊢ 𝐺 ∈ V |
7 |
|
bnj607.31 |
⊢ ( 𝜒′ ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) ) ) |
8 |
|
bnj607.32 |
⊢ ( 𝜑″ ↔ ( 𝐺 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
9 |
|
bnj607.33 |
⊢ ( 𝜓″ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
10 |
|
bnj607.37 |
⊢ ( ( 𝑛 ≠ 1o ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑚 ∃ 𝑝 𝜂 ) |
11 |
|
bnj607.38 |
⊢ ( ( 𝜃 ∧ 𝑚 ∈ 𝐷 ∧ 𝑚 E 𝑛 ) → 𝜒′ ) |
12 |
|
bnj607.41 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) → 𝐺 Fn 𝑛 ) |
13 |
|
bnj607.42 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) → 𝜑″ ) |
14 |
|
bnj607.43 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) → 𝜓″ ) |
15 |
|
bnj607.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
16 |
|
bnj607.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
17 |
|
bnj607.400 |
⊢ ( 𝜑0 ↔ [ ℎ / 𝑓 ] 𝜑 ) |
18 |
|
bnj607.401 |
⊢ ( 𝜓0 ↔ [ ℎ / 𝑓 ] 𝜓 ) |
19 |
|
bnj607.300 |
⊢ ( 𝜑1 ↔ [ 𝐺 / ℎ ] 𝜑0 ) |
20 |
|
bnj607.301 |
⊢ ( 𝜓1 ↔ [ 𝐺 / ℎ ] 𝜓0 ) |
21 |
10
|
anim1i |
⊢ ( ( ( 𝑛 ≠ 1o ∧ 𝑛 ∈ 𝐷 ) ∧ 𝜃 ) → ( ∃ 𝑚 ∃ 𝑝 𝜂 ∧ 𝜃 ) ) |
22 |
|
nfv |
⊢ Ⅎ 𝑝 𝜃 |
23 |
22
|
19.41 |
⊢ ( ∃ 𝑝 ( 𝜂 ∧ 𝜃 ) ↔ ( ∃ 𝑝 𝜂 ∧ 𝜃 ) ) |
24 |
23
|
exbii |
⊢ ( ∃ 𝑚 ∃ 𝑝 ( 𝜂 ∧ 𝜃 ) ↔ ∃ 𝑚 ( ∃ 𝑝 𝜂 ∧ 𝜃 ) ) |
25 |
1
|
bnj1095 |
⊢ ( 𝜃 → ∀ 𝑚 𝜃 ) |
26 |
25
|
nf5i |
⊢ Ⅎ 𝑚 𝜃 |
27 |
26
|
19.41 |
⊢ ( ∃ 𝑚 ( ∃ 𝑝 𝜂 ∧ 𝜃 ) ↔ ( ∃ 𝑚 ∃ 𝑝 𝜂 ∧ 𝜃 ) ) |
28 |
24 27
|
bitr2i |
⊢ ( ( ∃ 𝑚 ∃ 𝑝 𝜂 ∧ 𝜃 ) ↔ ∃ 𝑚 ∃ 𝑝 ( 𝜂 ∧ 𝜃 ) ) |
29 |
21 28
|
sylib |
⊢ ( ( ( 𝑛 ≠ 1o ∧ 𝑛 ∈ 𝐷 ) ∧ 𝜃 ) → ∃ 𝑚 ∃ 𝑝 ( 𝜂 ∧ 𝜃 ) ) |
30 |
5
|
bnj1232 |
⊢ ( 𝜂 → 𝑚 ∈ 𝐷 ) |
31 |
|
bnj219 |
⊢ ( 𝑛 = suc 𝑚 → 𝑚 E 𝑛 ) |
32 |
5 31
|
bnj770 |
⊢ ( 𝜂 → 𝑚 E 𝑛 ) |
33 |
30 32
|
jca |
⊢ ( 𝜂 → ( 𝑚 ∈ 𝐷 ∧ 𝑚 E 𝑛 ) ) |
34 |
33
|
anim1i |
⊢ ( ( 𝜂 ∧ 𝜃 ) → ( ( 𝑚 ∈ 𝐷 ∧ 𝑚 E 𝑛 ) ∧ 𝜃 ) ) |
35 |
|
bnj170 |
⊢ ( ( 𝜃 ∧ 𝑚 ∈ 𝐷 ∧ 𝑚 E 𝑛 ) ↔ ( ( 𝑚 ∈ 𝐷 ∧ 𝑚 E 𝑛 ) ∧ 𝜃 ) ) |
36 |
34 35
|
sylibr |
⊢ ( ( 𝜂 ∧ 𝜃 ) → ( 𝜃 ∧ 𝑚 ∈ 𝐷 ∧ 𝑚 E 𝑛 ) ) |
37 |
36 11
|
syl |
⊢ ( ( 𝜂 ∧ 𝜃 ) → 𝜒′ ) |
38 |
|
simpl |
⊢ ( ( 𝜂 ∧ 𝜃 ) → 𝜂 ) |
39 |
37 38
|
jca |
⊢ ( ( 𝜂 ∧ 𝜃 ) → ( 𝜒′ ∧ 𝜂 ) ) |
40 |
39
|
2eximi |
⊢ ( ∃ 𝑚 ∃ 𝑝 ( 𝜂 ∧ 𝜃 ) → ∃ 𝑚 ∃ 𝑝 ( 𝜒′ ∧ 𝜂 ) ) |
41 |
7
|
biimpi |
⊢ ( 𝜒′ → ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) ) ) |
42 |
|
euex |
⊢ ( ∃! 𝑓 ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) → ∃ 𝑓 ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) ) |
43 |
41 42
|
syl6 |
⊢ ( 𝜒′ → ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑓 ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) ) ) |
44 |
43
|
impcom |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜒′ ) → ∃ 𝑓 ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) ) |
45 |
44 4
|
bnj1198 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜒′ ) → ∃ 𝑓 𝜏 ) |
46 |
45
|
adantrr |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝜒′ ∧ 𝜂 ) ) → ∃ 𝑓 𝜏 ) |
47 |
|
id |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) → ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ) |
48 |
47
|
3com23 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜂 ∧ 𝜏 ) → ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ) |
49 |
48
|
3expia |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜂 ) → ( 𝜏 → ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ) ) |
50 |
49
|
eximdv |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜂 ) → ( ∃ 𝑓 𝜏 → ∃ 𝑓 ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ) ) |
51 |
50
|
ad2ant2rl |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝜒′ ∧ 𝜂 ) ) → ( ∃ 𝑓 𝜏 → ∃ 𝑓 ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ) ) |
52 |
46 51
|
mpd |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝜒′ ∧ 𝜂 ) ) → ∃ 𝑓 ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ) |
53 |
12 13 14
|
3jca |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) → ( 𝐺 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″ ) ) |
54 |
53
|
eximi |
⊢ ( ∃ 𝑓 ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) → ∃ 𝑓 ( 𝐺 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″ ) ) |
55 |
|
nfe1 |
⊢ Ⅎ 𝑓 ∃ 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) |
56 |
|
nfcv |
⊢ Ⅎ ℎ 𝐺 |
57 |
|
nfv |
⊢ Ⅎ ℎ 𝐺 Fn 𝑛 |
58 |
|
nfsbc1v |
⊢ Ⅎ ℎ [ 𝐺 / ℎ ] 𝜑0 |
59 |
19 58
|
nfxfr |
⊢ Ⅎ ℎ 𝜑1 |
60 |
|
nfsbc1v |
⊢ Ⅎ ℎ [ 𝐺 / ℎ ] 𝜓0 |
61 |
20 60
|
nfxfr |
⊢ Ⅎ ℎ 𝜓1 |
62 |
57 59 61
|
nf3an |
⊢ Ⅎ ℎ ( 𝐺 Fn 𝑛 ∧ 𝜑1 ∧ 𝜓1 ) |
63 |
|
fneq1 |
⊢ ( ℎ = 𝐺 → ( ℎ Fn 𝑛 ↔ 𝐺 Fn 𝑛 ) ) |
64 |
|
sbceq1a |
⊢ ( ℎ = 𝐺 → ( 𝜑0 ↔ [ 𝐺 / ℎ ] 𝜑0 ) ) |
65 |
64 19
|
bitr4di |
⊢ ( ℎ = 𝐺 → ( 𝜑0 ↔ 𝜑1 ) ) |
66 |
|
sbceq1a |
⊢ ( ℎ = 𝐺 → ( 𝜓0 ↔ [ 𝐺 / ℎ ] 𝜓0 ) ) |
67 |
66 20
|
bitr4di |
⊢ ( ℎ = 𝐺 → ( 𝜓0 ↔ 𝜓1 ) ) |
68 |
63 65 67
|
3anbi123d |
⊢ ( ℎ = 𝐺 → ( ( ℎ Fn 𝑛 ∧ 𝜑0 ∧ 𝜓0 ) ↔ ( 𝐺 Fn 𝑛 ∧ 𝜑1 ∧ 𝜓1 ) ) ) |
69 |
56 62 68
|
spcegf |
⊢ ( 𝐺 ∈ V → ( ( 𝐺 Fn 𝑛 ∧ 𝜑1 ∧ 𝜓1 ) → ∃ ℎ ( ℎ Fn 𝑛 ∧ 𝜑0 ∧ 𝜓0 ) ) ) |
70 |
6 69
|
ax-mp |
⊢ ( ( 𝐺 Fn 𝑛 ∧ 𝜑1 ∧ 𝜓1 ) → ∃ ℎ ( ℎ Fn 𝑛 ∧ 𝜑0 ∧ 𝜓0 ) ) |
71 |
17 15
|
bnj154 |
⊢ ( 𝜑0 ↔ ( ℎ ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
72 |
71 19 6
|
bnj526 |
⊢ ( 𝜑1 ↔ ( 𝐺 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
73 |
8 72
|
bitr4i |
⊢ ( 𝜑″ ↔ 𝜑1 ) |
74 |
|
vex |
⊢ ℎ ∈ V |
75 |
16 18 74
|
bnj540 |
⊢ ( 𝜓0 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( ℎ ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( ℎ ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
76 |
75 20 6
|
bnj540 |
⊢ ( 𝜓1 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
77 |
9 76
|
bitr4i |
⊢ ( 𝜓″ ↔ 𝜓1 ) |
78 |
73 77
|
anbi12i |
⊢ ( ( 𝜑″ ∧ 𝜓″ ) ↔ ( 𝜑1 ∧ 𝜓1 ) ) |
79 |
78
|
anbi2i |
⊢ ( ( 𝐺 Fn 𝑛 ∧ ( 𝜑″ ∧ 𝜓″ ) ) ↔ ( 𝐺 Fn 𝑛 ∧ ( 𝜑1 ∧ 𝜓1 ) ) ) |
80 |
|
3anass |
⊢ ( ( 𝐺 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″ ) ↔ ( 𝐺 Fn 𝑛 ∧ ( 𝜑″ ∧ 𝜓″ ) ) ) |
81 |
|
3anass |
⊢ ( ( 𝐺 Fn 𝑛 ∧ 𝜑1 ∧ 𝜓1 ) ↔ ( 𝐺 Fn 𝑛 ∧ ( 𝜑1 ∧ 𝜓1 ) ) ) |
82 |
79 80 81
|
3bitr4i |
⊢ ( ( 𝐺 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″ ) ↔ ( 𝐺 Fn 𝑛 ∧ 𝜑1 ∧ 𝜓1 ) ) |
83 |
|
nfv |
⊢ Ⅎ ℎ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) |
84 |
|
nfv |
⊢ Ⅎ 𝑓 ℎ Fn 𝑛 |
85 |
|
nfsbc1v |
⊢ Ⅎ 𝑓 [ ℎ / 𝑓 ] 𝜑 |
86 |
17 85
|
nfxfr |
⊢ Ⅎ 𝑓 𝜑0 |
87 |
|
nfsbc1v |
⊢ Ⅎ 𝑓 [ ℎ / 𝑓 ] 𝜓 |
88 |
18 87
|
nfxfr |
⊢ Ⅎ 𝑓 𝜓0 |
89 |
84 86 88
|
nf3an |
⊢ Ⅎ 𝑓 ( ℎ Fn 𝑛 ∧ 𝜑0 ∧ 𝜓0 ) |
90 |
|
fneq1 |
⊢ ( 𝑓 = ℎ → ( 𝑓 Fn 𝑛 ↔ ℎ Fn 𝑛 ) ) |
91 |
|
sbceq1a |
⊢ ( 𝑓 = ℎ → ( 𝜑 ↔ [ ℎ / 𝑓 ] 𝜑 ) ) |
92 |
91 17
|
bitr4di |
⊢ ( 𝑓 = ℎ → ( 𝜑 ↔ 𝜑0 ) ) |
93 |
|
sbceq1a |
⊢ ( 𝑓 = ℎ → ( 𝜓 ↔ [ ℎ / 𝑓 ] 𝜓 ) ) |
94 |
93 18
|
bitr4di |
⊢ ( 𝑓 = ℎ → ( 𝜓 ↔ 𝜓0 ) ) |
95 |
90 92 94
|
3anbi123d |
⊢ ( 𝑓 = ℎ → ( ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ↔ ( ℎ Fn 𝑛 ∧ 𝜑0 ∧ 𝜓0 ) ) ) |
96 |
83 89 95
|
cbvexv1 |
⊢ ( ∃ 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ↔ ∃ ℎ ( ℎ Fn 𝑛 ∧ 𝜑0 ∧ 𝜓0 ) ) |
97 |
70 82 96
|
3imtr4i |
⊢ ( ( 𝐺 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″ ) → ∃ 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
98 |
55 97
|
exlimi |
⊢ ( ∃ 𝑓 ( 𝐺 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″ ) → ∃ 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
99 |
52 54 98
|
3syl |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝜒′ ∧ 𝜂 ) ) → ∃ 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
100 |
99
|
expcom |
⊢ ( ( 𝜒′ ∧ 𝜂 ) → ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
101 |
100
|
exlimivv |
⊢ ( ∃ 𝑚 ∃ 𝑝 ( 𝜒′ ∧ 𝜂 ) → ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
102 |
29 40 101
|
3syl |
⊢ ( ( ( 𝑛 ≠ 1o ∧ 𝑛 ∈ 𝐷 ) ∧ 𝜃 ) → ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
103 |
102
|
3impa |
⊢ ( ( 𝑛 ≠ 1o ∧ 𝑛 ∈ 𝐷 ∧ 𝜃 ) → ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |