Step |
Hyp |
Ref |
Expression |
1 |
|
bnj609.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj609.2 |
⊢ ( 𝜑″ ↔ [ 𝐺 / 𝑓 ] 𝜑 ) |
3 |
|
bnj609.3 |
⊢ 𝐺 ∈ V |
4 |
|
dfsbcq |
⊢ ( 𝑒 = 𝐺 → ( [ 𝑒 / 𝑓 ] 𝜑 ↔ [ 𝐺 / 𝑓 ] 𝜑 ) ) |
5 |
|
fveq1 |
⊢ ( 𝑒 = 𝐺 → ( 𝑒 ‘ ∅ ) = ( 𝐺 ‘ ∅ ) ) |
6 |
5
|
eqeq1d |
⊢ ( 𝑒 = 𝐺 → ( ( 𝑒 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ↔ ( 𝐺 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) ) |
7 |
1
|
sbcbii |
⊢ ( [ 𝑒 / 𝑓 ] 𝜑 ↔ [ 𝑒 / 𝑓 ] ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
8 |
|
vex |
⊢ 𝑒 ∈ V |
9 |
|
fveq1 |
⊢ ( 𝑓 = 𝑒 → ( 𝑓 ‘ ∅ ) = ( 𝑒 ‘ ∅ ) ) |
10 |
9
|
eqeq1d |
⊢ ( 𝑓 = 𝑒 → ( ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ↔ ( 𝑒 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) ) |
11 |
8 10
|
sbcie |
⊢ ( [ 𝑒 / 𝑓 ] ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ↔ ( 𝑒 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
12 |
7 11
|
bitri |
⊢ ( [ 𝑒 / 𝑓 ] 𝜑 ↔ ( 𝑒 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
13 |
3 4 6 12
|
vtoclb |
⊢ ( [ 𝐺 / 𝑓 ] 𝜑 ↔ ( 𝐺 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
14 |
2 13
|
bitri |
⊢ ( 𝜑″ ↔ ( 𝐺 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |