Metamath Proof Explorer


Theorem bnj609

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj609.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
bnj609.2 ( 𝜑″[ 𝐺 / 𝑓 ] 𝜑 )
bnj609.3 𝐺 ∈ V
Assertion bnj609 ( 𝜑″ ↔ ( 𝐺 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )

Proof

Step Hyp Ref Expression
1 bnj609.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
2 bnj609.2 ( 𝜑″[ 𝐺 / 𝑓 ] 𝜑 )
3 bnj609.3 𝐺 ∈ V
4 dfsbcq ( 𝑒 = 𝐺 → ( [ 𝑒 / 𝑓 ] 𝜑[ 𝐺 / 𝑓 ] 𝜑 ) )
5 fveq1 ( 𝑒 = 𝐺 → ( 𝑒 ‘ ∅ ) = ( 𝐺 ‘ ∅ ) )
6 5 eqeq1d ( 𝑒 = 𝐺 → ( ( 𝑒 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ↔ ( 𝐺 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) )
7 1 sbcbii ( [ 𝑒 / 𝑓 ] 𝜑[ 𝑒 / 𝑓 ] ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
8 vex 𝑒 ∈ V
9 fveq1 ( 𝑓 = 𝑒 → ( 𝑓 ‘ ∅ ) = ( 𝑒 ‘ ∅ ) )
10 9 eqeq1d ( 𝑓 = 𝑒 → ( ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ↔ ( 𝑒 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) )
11 8 10 sbcie ( [ 𝑒 / 𝑓 ] ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ↔ ( 𝑒 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
12 7 11 bitri ( [ 𝑒 / 𝑓 ] 𝜑 ↔ ( 𝑒 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
13 3 4 6 12 vtoclb ( [ 𝐺 / 𝑓 ] 𝜑 ↔ ( 𝐺 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
14 2 13 bitri ( 𝜑″ ↔ ( 𝐺 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )