Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jonathan Ben-Naim
First-order logic and set theory
bnj610
Metamath Proof Explorer
Description: Pass from equality ( x = A ) to substitution ( [. A / x ]. )
without the distinct variable condition on A , x . (Contributed by Jonathan Ben-Naim , 3-Jun-2011) (New usage is discouraged.)
Ref
Expression
Hypotheses
bnj610.1
⊢ 𝐴 ∈ V
bnj610.2
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) )
bnj610.3
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓′ ) )
bnj610.4
⊢ ( 𝑦 = 𝐴 → ( 𝜓′ ↔ 𝜓 ) )
Assertion
bnj610
⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜓 )
Proof
Step
Hyp
Ref
Expression
1
bnj610.1
⊢ 𝐴 ∈ V
2
bnj610.2
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) )
3
bnj610.3
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓′ ) )
4
bnj610.4
⊢ ( 𝑦 = 𝐴 → ( 𝜓′ ↔ 𝜓 ) )
5
vex
⊢ 𝑦 ∈ V
6
5 3
sbcie
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓′ )
7
6
sbcbii
⊢ ( [ 𝐴 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑦 ] 𝜓′ )
8
sbccow
⊢ ( [ 𝐴 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 )
9
1 4
sbcie
⊢ ( [ 𝐴 / 𝑦 ] 𝜓′ ↔ 𝜓 )
10
7 8 9
3bitr3i
⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜓 )