Metamath Proof Explorer


Theorem bnj611

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj611.1 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑁 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj611.2 ( 𝜓″[ 𝐺 / 𝑓 ] 𝜓 )
bnj611.3 𝐺 ∈ V
Assertion bnj611 ( 𝜓″ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑁 → ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 bnj611.1 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑁 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
2 bnj611.2 ( 𝜓″[ 𝐺 / 𝑓 ] 𝜓 )
3 bnj611.3 𝐺 ∈ V
4 df-ral ( ∀ 𝑖 ∈ ω ( suc 𝑖𝑁 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑖 ( 𝑖 ∈ ω → ( suc 𝑖𝑁 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
5 4 bicomi ( ∀ 𝑖 ( 𝑖 ∈ ω → ( suc 𝑖𝑁 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑁 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
6 5 sbcbii ( [ 𝐺 / 𝑓 ]𝑖 ( 𝑖 ∈ ω → ( suc 𝑖𝑁 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ [ 𝐺 / 𝑓 ]𝑖 ∈ ω ( suc 𝑖𝑁 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
7 nfv 𝑓 𝑖 ∈ ω
8 7 sbc19.21g ( 𝐺 ∈ V → ( [ 𝐺 / 𝑓 ] ( 𝑖 ∈ ω → ( suc 𝑖𝑁 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( 𝑖 ∈ ω → [ 𝐺 / 𝑓 ] ( suc 𝑖𝑁 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) )
9 3 8 ax-mp ( [ 𝐺 / 𝑓 ] ( 𝑖 ∈ ω → ( suc 𝑖𝑁 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( 𝑖 ∈ ω → [ 𝐺 / 𝑓 ] ( suc 𝑖𝑁 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
10 nfv 𝑓 suc 𝑖𝑁
11 10 sbc19.21g ( 𝐺 ∈ V → ( [ 𝐺 / 𝑓 ] ( suc 𝑖𝑁 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( suc 𝑖𝑁[ 𝐺 / 𝑓 ] ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
12 3 11 ax-mp ( [ 𝐺 / 𝑓 ] ( suc 𝑖𝑁 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( suc 𝑖𝑁[ 𝐺 / 𝑓 ] ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
13 fveq1 ( 𝑓 = 𝐺 → ( 𝑓 ‘ suc 𝑖 ) = ( 𝐺 ‘ suc 𝑖 ) )
14 fveq1 ( 𝑓 = 𝐺 → ( 𝑓𝑖 ) = ( 𝐺𝑖 ) )
15 14 bnj1113 ( 𝑓 = 𝐺 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
16 13 15 eqeq12d ( 𝑓 = 𝐺 → ( ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
17 fveq1 ( 𝑓 = 𝑒 → ( 𝑓 ‘ suc 𝑖 ) = ( 𝑒 ‘ suc 𝑖 ) )
18 fveq1 ( 𝑓 = 𝑒 → ( 𝑓𝑖 ) = ( 𝑒𝑖 ) )
19 18 bnj1113 ( 𝑓 = 𝑒 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = 𝑦 ∈ ( 𝑒𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
20 17 19 eqeq12d ( 𝑓 = 𝑒 → ( ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ ( 𝑒 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑒𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
21 fveq1 ( 𝑒 = 𝐺 → ( 𝑒 ‘ suc 𝑖 ) = ( 𝐺 ‘ suc 𝑖 ) )
22 fveq1 ( 𝑒 = 𝐺 → ( 𝑒𝑖 ) = ( 𝐺𝑖 ) )
23 22 bnj1113 ( 𝑒 = 𝐺 𝑦 ∈ ( 𝑒𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
24 21 23 eqeq12d ( 𝑒 = 𝐺 → ( ( 𝑒 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑒𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
25 3 16 20 24 bnj610 ( [ 𝐺 / 𝑓 ] ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
26 25 imbi2i ( ( suc 𝑖𝑁[ 𝐺 / 𝑓 ] ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( suc 𝑖𝑁 → ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
27 12 26 bitri ( [ 𝐺 / 𝑓 ] ( suc 𝑖𝑁 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( suc 𝑖𝑁 → ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
28 27 imbi2i ( ( 𝑖 ∈ ω → [ 𝐺 / 𝑓 ] ( suc 𝑖𝑁 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( 𝑖 ∈ ω → ( suc 𝑖𝑁 → ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
29 9 28 bitri ( [ 𝐺 / 𝑓 ] ( 𝑖 ∈ ω → ( suc 𝑖𝑁 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( 𝑖 ∈ ω → ( suc 𝑖𝑁 → ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
30 29 albii ( ∀ 𝑖 [ 𝐺 / 𝑓 ] ( 𝑖 ∈ ω → ( suc 𝑖𝑁 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ∀ 𝑖 ( 𝑖 ∈ ω → ( suc 𝑖𝑁 → ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
31 sbcal ( [ 𝐺 / 𝑓 ]𝑖 ( 𝑖 ∈ ω → ( suc 𝑖𝑁 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ∀ 𝑖 [ 𝐺 / 𝑓 ] ( 𝑖 ∈ ω → ( suc 𝑖𝑁 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
32 df-ral ( ∀ 𝑖 ∈ ω ( suc 𝑖𝑁 → ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑖 ( 𝑖 ∈ ω → ( suc 𝑖𝑁 → ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
33 30 31 32 3bitr4ri ( ∀ 𝑖 ∈ ω ( suc 𝑖𝑁 → ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ [ 𝐺 / 𝑓 ]𝑖 ( 𝑖 ∈ ω → ( suc 𝑖𝑁 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
34 1 sbcbii ( [ 𝐺 / 𝑓 ] 𝜓[ 𝐺 / 𝑓 ]𝑖 ∈ ω ( suc 𝑖𝑁 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
35 6 33 34 3bitr4ri ( [ 𝐺 / 𝑓 ] 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑁 → ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
36 2 35 bitri ( 𝜓″ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑁 → ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )