Step |
Hyp |
Ref |
Expression |
1 |
|
bnj611.1 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
2 |
|
bnj611.2 |
⊢ ( 𝜓″ ↔ [ 𝐺 / 𝑓 ] 𝜓 ) |
3 |
|
bnj611.3 |
⊢ 𝐺 ∈ V |
4 |
|
df-ral |
⊢ ( ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑖 ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
5 |
4
|
bicomi |
⊢ ( ∀ 𝑖 ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
6 |
5
|
sbcbii |
⊢ ( [ 𝐺 / 𝑓 ] ∀ 𝑖 ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ [ 𝐺 / 𝑓 ] ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
7 |
|
nfv |
⊢ Ⅎ 𝑓 𝑖 ∈ ω |
8 |
7
|
sbc19.21g |
⊢ ( 𝐺 ∈ V → ( [ 𝐺 / 𝑓 ] ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( 𝑖 ∈ ω → [ 𝐺 / 𝑓 ] ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) ) |
9 |
3 8
|
ax-mp |
⊢ ( [ 𝐺 / 𝑓 ] ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( 𝑖 ∈ ω → [ 𝐺 / 𝑓 ] ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
10 |
|
nfv |
⊢ Ⅎ 𝑓 suc 𝑖 ∈ 𝑁 |
11 |
10
|
sbc19.21g |
⊢ ( 𝐺 ∈ V → ( [ 𝐺 / 𝑓 ] ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( suc 𝑖 ∈ 𝑁 → [ 𝐺 / 𝑓 ] ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
12 |
3 11
|
ax-mp |
⊢ ( [ 𝐺 / 𝑓 ] ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( suc 𝑖 ∈ 𝑁 → [ 𝐺 / 𝑓 ] ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
13 |
|
fveq1 |
⊢ ( 𝑓 = 𝐺 → ( 𝑓 ‘ suc 𝑖 ) = ( 𝐺 ‘ suc 𝑖 ) ) |
14 |
|
fveq1 |
⊢ ( 𝑓 = 𝐺 → ( 𝑓 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑖 ) ) |
15 |
14
|
bnj1113 |
⊢ ( 𝑓 = 𝐺 → ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
16 |
13 15
|
eqeq12d |
⊢ ( 𝑓 = 𝐺 → ( ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
17 |
|
fveq1 |
⊢ ( 𝑓 = 𝑒 → ( 𝑓 ‘ suc 𝑖 ) = ( 𝑒 ‘ suc 𝑖 ) ) |
18 |
|
fveq1 |
⊢ ( 𝑓 = 𝑒 → ( 𝑓 ‘ 𝑖 ) = ( 𝑒 ‘ 𝑖 ) ) |
19 |
18
|
bnj1113 |
⊢ ( 𝑓 = 𝑒 → ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( 𝑒 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
20 |
17 19
|
eqeq12d |
⊢ ( 𝑓 = 𝑒 → ( ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ ( 𝑒 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑒 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
21 |
|
fveq1 |
⊢ ( 𝑒 = 𝐺 → ( 𝑒 ‘ suc 𝑖 ) = ( 𝐺 ‘ suc 𝑖 ) ) |
22 |
|
fveq1 |
⊢ ( 𝑒 = 𝐺 → ( 𝑒 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑖 ) ) |
23 |
22
|
bnj1113 |
⊢ ( 𝑒 = 𝐺 → ∪ 𝑦 ∈ ( 𝑒 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
24 |
21 23
|
eqeq12d |
⊢ ( 𝑒 = 𝐺 → ( ( 𝑒 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑒 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
25 |
3 16 20 24
|
bnj610 |
⊢ ( [ 𝐺 / 𝑓 ] ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
26 |
25
|
imbi2i |
⊢ ( ( suc 𝑖 ∈ 𝑁 → [ 𝐺 / 𝑓 ] ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( suc 𝑖 ∈ 𝑁 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
27 |
12 26
|
bitri |
⊢ ( [ 𝐺 / 𝑓 ] ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( suc 𝑖 ∈ 𝑁 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
28 |
27
|
imbi2i |
⊢ ( ( 𝑖 ∈ ω → [ 𝐺 / 𝑓 ] ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
29 |
9 28
|
bitri |
⊢ ( [ 𝐺 / 𝑓 ] ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
30 |
29
|
albii |
⊢ ( ∀ 𝑖 [ 𝐺 / 𝑓 ] ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ∀ 𝑖 ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
31 |
|
sbcal |
⊢ ( [ 𝐺 / 𝑓 ] ∀ 𝑖 ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ∀ 𝑖 [ 𝐺 / 𝑓 ] ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
32 |
|
df-ral |
⊢ ( ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑖 ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
33 |
30 31 32
|
3bitr4ri |
⊢ ( ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ [ 𝐺 / 𝑓 ] ∀ 𝑖 ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
34 |
1
|
sbcbii |
⊢ ( [ 𝐺 / 𝑓 ] 𝜓 ↔ [ 𝐺 / 𝑓 ] ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
35 |
6 33 34
|
3bitr4ri |
⊢ ( [ 𝐺 / 𝑓 ] 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
36 |
2 35
|
bitri |
⊢ ( 𝜓″ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |