Metamath Proof Explorer


Theorem bnj707

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj707.1 ( 𝜒𝜏 )
Assertion bnj707 ( ( 𝜑𝜓𝜒𝜃 ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 bnj707.1 ( 𝜒𝜏 )
2 bnj258 ( ( 𝜑𝜓𝜒𝜃 ) ↔ ( ( 𝜑𝜓𝜃 ) ∧ 𝜒 ) )
3 2 simprbi ( ( 𝜑𝜓𝜒𝜃 ) → 𝜒 )
4 3 1 syl ( ( 𝜑𝜓𝜒𝜃 ) → 𝜏 )