Metamath Proof Explorer


Theorem bnj769

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj769.1 ( 𝜂 ↔ ( 𝜑𝜓𝜒𝜃 ) )
bnj769.2 ( 𝜑𝜏 )
Assertion bnj769 ( 𝜂𝜏 )

Proof

Step Hyp Ref Expression
1 bnj769.1 ( 𝜂 ↔ ( 𝜑𝜓𝜒𝜃 ) )
2 bnj769.2 ( 𝜑𝜏 )
3 2 bnj705 ( ( 𝜑𝜓𝜒𝜃 ) → 𝜏 )
4 1 3 sylbi ( 𝜂𝜏 )