Metamath Proof Explorer


Theorem bnj770

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj770.1 ( 𝜂 ↔ ( 𝜑𝜓𝜒𝜃 ) )
bnj770.2 ( 𝜓𝜏 )
Assertion bnj770 ( 𝜂𝜏 )

Proof

Step Hyp Ref Expression
1 bnj770.1 ( 𝜂 ↔ ( 𝜑𝜓𝜒𝜃 ) )
2 bnj770.2 ( 𝜓𝜏 )
3 2 bnj706 ( ( 𝜑𝜓𝜒𝜃 ) → 𝜏 )
4 1 3 sylbi ( 𝜂𝜏 )