Metamath Proof Explorer


Theorem bnj832

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj832.1 ( 𝜂 ↔ ( 𝜑𝜓 ) )
bnj832.2 ( 𝜑𝜏 )
Assertion bnj832 ( 𝜂𝜏 )

Proof

Step Hyp Ref Expression
1 bnj832.1 ( 𝜂 ↔ ( 𝜑𝜓 ) )
2 bnj832.2 ( 𝜑𝜏 )
3 2 adantr ( ( 𝜑𝜓 ) → 𝜏 )
4 1 3 sylbi ( 𝜂𝜏 )