Step |
Hyp |
Ref |
Expression |
1 |
|
bnj849.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj849.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
3 |
|
bnj849.3 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
4 |
|
bnj849.4 |
⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) } |
5 |
|
bnj849.5 |
⊢ ( 𝜒 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) ) |
6 |
|
bnj849.6 |
⊢ ( 𝜃 ↔ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
7 |
|
bnj849.7 |
⊢ ( 𝜑′ ↔ [ 𝑔 / 𝑓 ] 𝜑 ) |
8 |
|
bnj849.8 |
⊢ ( 𝜓′ ↔ [ 𝑔 / 𝑓 ] 𝜓 ) |
9 |
|
bnj849.9 |
⊢ ( 𝜃′ ↔ [ 𝑔 / 𝑓 ] 𝜃 ) |
10 |
|
bnj849.10 |
⊢ ( 𝜏 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) |
11 |
1 2 3 5 6
|
bnj865 |
⊢ ∃ 𝑤 ∀ 𝑛 ( 𝜒 → ∃ 𝑓 ∈ 𝑤 𝜃 ) |
12 |
4 7 8
|
bnj873 |
⊢ 𝐵 = { 𝑔 ∣ ∃ 𝑛 ∈ 𝐷 ( 𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′ ) } |
13 |
|
df-rex |
⊢ ( ∃ 𝑛 ∈ 𝐷 ( 𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′ ) ↔ ∃ 𝑛 ( 𝑛 ∈ 𝐷 ∧ ( 𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′ ) ) ) |
14 |
|
19.29 |
⊢ ( ( ∀ 𝑛 ( 𝜒 → ∃ 𝑓 ∈ 𝑤 𝜃 ) ∧ ∃ 𝑛 ( 𝑛 ∈ 𝐷 ∧ ( 𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′ ) ) ) → ∃ 𝑛 ( ( 𝜒 → ∃ 𝑓 ∈ 𝑤 𝜃 ) ∧ ( 𝑛 ∈ 𝐷 ∧ ( 𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′ ) ) ) ) |
15 |
|
an12 |
⊢ ( ( ( 𝜒 → ∃ 𝑓 ∈ 𝑤 𝜃 ) ∧ ( 𝑛 ∈ 𝐷 ∧ ( 𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′ ) ) ) ↔ ( 𝑛 ∈ 𝐷 ∧ ( ( 𝜒 → ∃ 𝑓 ∈ 𝑤 𝜃 ) ∧ ( 𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′ ) ) ) ) |
16 |
|
df-3an |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐷 ) ) |
17 |
10
|
anbi1i |
⊢ ( ( 𝜏 ∧ 𝑛 ∈ 𝐷 ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐷 ) ) |
18 |
16 5 17
|
3bitr4i |
⊢ ( 𝜒 ↔ ( 𝜏 ∧ 𝑛 ∈ 𝐷 ) ) |
19 |
|
id |
⊢ ( 𝜒 → 𝜒 ) |
20 |
6 7 8 9
|
bnj581 |
⊢ ( 𝜃′ ↔ ( 𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′ ) ) |
21 |
9 20
|
bitr3i |
⊢ ( [ 𝑔 / 𝑓 ] 𝜃 ↔ ( 𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′ ) ) |
22 |
1 2 3 5 6
|
bnj864 |
⊢ ( 𝜒 → ∃! 𝑓 𝜃 ) |
23 |
|
df-rex |
⊢ ( ∃ 𝑓 ∈ 𝑤 𝜃 ↔ ∃ 𝑓 ( 𝑓 ∈ 𝑤 ∧ 𝜃 ) ) |
24 |
|
exancom |
⊢ ( ∃ 𝑓 ( 𝑓 ∈ 𝑤 ∧ 𝜃 ) ↔ ∃ 𝑓 ( 𝜃 ∧ 𝑓 ∈ 𝑤 ) ) |
25 |
23 24
|
sylbb |
⊢ ( ∃ 𝑓 ∈ 𝑤 𝜃 → ∃ 𝑓 ( 𝜃 ∧ 𝑓 ∈ 𝑤 ) ) |
26 |
|
nfeu1 |
⊢ Ⅎ 𝑓 ∃! 𝑓 𝜃 |
27 |
|
nfe1 |
⊢ Ⅎ 𝑓 ∃ 𝑓 ( 𝜃 ∧ 𝑓 ∈ 𝑤 ) |
28 |
26 27
|
nfan |
⊢ Ⅎ 𝑓 ( ∃! 𝑓 𝜃 ∧ ∃ 𝑓 ( 𝜃 ∧ 𝑓 ∈ 𝑤 ) ) |
29 |
|
nfsbc1v |
⊢ Ⅎ 𝑓 [ 𝑔 / 𝑓 ] 𝜃 |
30 |
|
nfv |
⊢ Ⅎ 𝑓 𝑔 ∈ 𝑤 |
31 |
29 30
|
nfim |
⊢ Ⅎ 𝑓 ( [ 𝑔 / 𝑓 ] 𝜃 → 𝑔 ∈ 𝑤 ) |
32 |
28 31
|
nfim |
⊢ Ⅎ 𝑓 ( ( ∃! 𝑓 𝜃 ∧ ∃ 𝑓 ( 𝜃 ∧ 𝑓 ∈ 𝑤 ) ) → ( [ 𝑔 / 𝑓 ] 𝜃 → 𝑔 ∈ 𝑤 ) ) |
33 |
|
sbceq1a |
⊢ ( 𝑓 = 𝑔 → ( 𝜃 ↔ [ 𝑔 / 𝑓 ] 𝜃 ) ) |
34 |
|
elequ1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ∈ 𝑤 ↔ 𝑔 ∈ 𝑤 ) ) |
35 |
33 34
|
imbi12d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝜃 → 𝑓 ∈ 𝑤 ) ↔ ( [ 𝑔 / 𝑓 ] 𝜃 → 𝑔 ∈ 𝑤 ) ) ) |
36 |
35
|
imbi2d |
⊢ ( 𝑓 = 𝑔 → ( ( ( ∃! 𝑓 𝜃 ∧ ∃ 𝑓 ( 𝜃 ∧ 𝑓 ∈ 𝑤 ) ) → ( 𝜃 → 𝑓 ∈ 𝑤 ) ) ↔ ( ( ∃! 𝑓 𝜃 ∧ ∃ 𝑓 ( 𝜃 ∧ 𝑓 ∈ 𝑤 ) ) → ( [ 𝑔 / 𝑓 ] 𝜃 → 𝑔 ∈ 𝑤 ) ) ) ) |
37 |
|
eupick |
⊢ ( ( ∃! 𝑓 𝜃 ∧ ∃ 𝑓 ( 𝜃 ∧ 𝑓 ∈ 𝑤 ) ) → ( 𝜃 → 𝑓 ∈ 𝑤 ) ) |
38 |
32 36 37
|
chvarfv |
⊢ ( ( ∃! 𝑓 𝜃 ∧ ∃ 𝑓 ( 𝜃 ∧ 𝑓 ∈ 𝑤 ) ) → ( [ 𝑔 / 𝑓 ] 𝜃 → 𝑔 ∈ 𝑤 ) ) |
39 |
22 25 38
|
syl2an |
⊢ ( ( 𝜒 ∧ ∃ 𝑓 ∈ 𝑤 𝜃 ) → ( [ 𝑔 / 𝑓 ] 𝜃 → 𝑔 ∈ 𝑤 ) ) |
40 |
21 39
|
syl5bir |
⊢ ( ( 𝜒 ∧ ∃ 𝑓 ∈ 𝑤 𝜃 ) → ( ( 𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′ ) → 𝑔 ∈ 𝑤 ) ) |
41 |
40
|
ex |
⊢ ( 𝜒 → ( ∃ 𝑓 ∈ 𝑤 𝜃 → ( ( 𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′ ) → 𝑔 ∈ 𝑤 ) ) ) |
42 |
19 41
|
embantd |
⊢ ( 𝜒 → ( ( 𝜒 → ∃ 𝑓 ∈ 𝑤 𝜃 ) → ( ( 𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′ ) → 𝑔 ∈ 𝑤 ) ) ) |
43 |
42
|
impd |
⊢ ( 𝜒 → ( ( ( 𝜒 → ∃ 𝑓 ∈ 𝑤 𝜃 ) ∧ ( 𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′ ) ) → 𝑔 ∈ 𝑤 ) ) |
44 |
18 43
|
sylbir |
⊢ ( ( 𝜏 ∧ 𝑛 ∈ 𝐷 ) → ( ( ( 𝜒 → ∃ 𝑓 ∈ 𝑤 𝜃 ) ∧ ( 𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′ ) ) → 𝑔 ∈ 𝑤 ) ) |
45 |
44
|
expimpd |
⊢ ( 𝜏 → ( ( 𝑛 ∈ 𝐷 ∧ ( ( 𝜒 → ∃ 𝑓 ∈ 𝑤 𝜃 ) ∧ ( 𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′ ) ) ) → 𝑔 ∈ 𝑤 ) ) |
46 |
15 45
|
syl5bi |
⊢ ( 𝜏 → ( ( ( 𝜒 → ∃ 𝑓 ∈ 𝑤 𝜃 ) ∧ ( 𝑛 ∈ 𝐷 ∧ ( 𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′ ) ) ) → 𝑔 ∈ 𝑤 ) ) |
47 |
46
|
exlimdv |
⊢ ( 𝜏 → ( ∃ 𝑛 ( ( 𝜒 → ∃ 𝑓 ∈ 𝑤 𝜃 ) ∧ ( 𝑛 ∈ 𝐷 ∧ ( 𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′ ) ) ) → 𝑔 ∈ 𝑤 ) ) |
48 |
14 47
|
syl5 |
⊢ ( 𝜏 → ( ( ∀ 𝑛 ( 𝜒 → ∃ 𝑓 ∈ 𝑤 𝜃 ) ∧ ∃ 𝑛 ( 𝑛 ∈ 𝐷 ∧ ( 𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′ ) ) ) → 𝑔 ∈ 𝑤 ) ) |
49 |
48
|
expdimp |
⊢ ( ( 𝜏 ∧ ∀ 𝑛 ( 𝜒 → ∃ 𝑓 ∈ 𝑤 𝜃 ) ) → ( ∃ 𝑛 ( 𝑛 ∈ 𝐷 ∧ ( 𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′ ) ) → 𝑔 ∈ 𝑤 ) ) |
50 |
13 49
|
syl5bi |
⊢ ( ( 𝜏 ∧ ∀ 𝑛 ( 𝜒 → ∃ 𝑓 ∈ 𝑤 𝜃 ) ) → ( ∃ 𝑛 ∈ 𝐷 ( 𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′ ) → 𝑔 ∈ 𝑤 ) ) |
51 |
50
|
abssdv |
⊢ ( ( 𝜏 ∧ ∀ 𝑛 ( 𝜒 → ∃ 𝑓 ∈ 𝑤 𝜃 ) ) → { 𝑔 ∣ ∃ 𝑛 ∈ 𝐷 ( 𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′ ) } ⊆ 𝑤 ) |
52 |
12 51
|
eqsstrid |
⊢ ( ( 𝜏 ∧ ∀ 𝑛 ( 𝜒 → ∃ 𝑓 ∈ 𝑤 𝜃 ) ) → 𝐵 ⊆ 𝑤 ) |
53 |
|
vex |
⊢ 𝑤 ∈ V |
54 |
53
|
ssex |
⊢ ( 𝐵 ⊆ 𝑤 → 𝐵 ∈ V ) |
55 |
52 54
|
syl |
⊢ ( ( 𝜏 ∧ ∀ 𝑛 ( 𝜒 → ∃ 𝑓 ∈ 𝑤 𝜃 ) ) → 𝐵 ∈ V ) |
56 |
55
|
ex |
⊢ ( 𝜏 → ( ∀ 𝑛 ( 𝜒 → ∃ 𝑓 ∈ 𝑤 𝜃 ) → 𝐵 ∈ V ) ) |
57 |
56
|
exlimdv |
⊢ ( 𝜏 → ( ∃ 𝑤 ∀ 𝑛 ( 𝜒 → ∃ 𝑓 ∈ 𝑤 𝜃 ) → 𝐵 ∈ V ) ) |
58 |
11 57
|
mpi |
⊢ ( 𝜏 → 𝐵 ∈ V ) |
59 |
10 58
|
sylbir |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → 𝐵 ∈ V ) |