Step |
Hyp |
Ref |
Expression |
1 |
|
bnj852.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj852.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
3 |
|
bnj852.3 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
4 |
|
elisset |
⊢ ( 𝑋 ∈ 𝐴 → ∃ 𝑥 𝑥 = 𝑋 ) |
5 |
4
|
adantl |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∃ 𝑥 𝑥 = 𝑋 ) |
6 |
5
|
ancri |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ∃ 𝑥 𝑥 = 𝑋 ∧ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) ) |
7 |
6
|
bnj534 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∃ 𝑥 ( 𝑥 = 𝑋 ∧ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) ) |
8 |
|
eleq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴 ) ) |
9 |
8
|
anbi2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) ) |
10 |
9
|
biimpar |
⊢ ( ( 𝑥 = 𝑋 ∧ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) |
11 |
|
biid |
⊢ ( ∀ 𝑧 ∈ 𝐷 ( 𝑧 E 𝑛 → [ 𝑧 / 𝑛 ] ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝜓 ) ) ) ↔ ∀ 𝑧 ∈ 𝐷 ( 𝑧 E 𝑛 → [ 𝑧 / 𝑛 ] ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝜓 ) ) ) ) |
12 |
|
omex |
⊢ ω ∈ V |
13 |
|
difexg |
⊢ ( ω ∈ V → ( ω ∖ { ∅ } ) ∈ V ) |
14 |
12 13
|
ax-mp |
⊢ ( ω ∖ { ∅ } ) ∈ V |
15 |
3 14
|
eqeltri |
⊢ 𝐷 ∈ V |
16 |
|
zfregfr |
⊢ E Fr 𝐷 |
17 |
11 15 16
|
bnj157 |
⊢ ( ∀ 𝑛 ∈ 𝐷 ( ∀ 𝑧 ∈ 𝐷 ( 𝑧 E 𝑛 → [ 𝑧 / 𝑛 ] ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝜓 ) ) ) → ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝜓 ) ) ) → ∀ 𝑛 ∈ 𝐷 ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝜓 ) ) ) |
18 |
|
biid |
⊢ ( ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
19 |
|
biid |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝜓 ) ) ) |
20 |
18 2 3 19 11
|
bnj153 |
⊢ ( 𝑛 = 1o → ( ( 𝑛 ∈ 𝐷 ∧ ∀ 𝑧 ∈ 𝐷 ( 𝑧 E 𝑛 → [ 𝑧 / 𝑛 ] ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝜓 ) ) ) ) → ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝜓 ) ) ) ) |
21 |
18 2 3 19 11
|
bnj601 |
⊢ ( 𝑛 ≠ 1o → ( ( 𝑛 ∈ 𝐷 ∧ ∀ 𝑧 ∈ 𝐷 ( 𝑧 E 𝑛 → [ 𝑧 / 𝑛 ] ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝜓 ) ) ) ) → ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝜓 ) ) ) ) |
22 |
20 21
|
pm2.61ine |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ ∀ 𝑧 ∈ 𝐷 ( 𝑧 E 𝑛 → [ 𝑧 / 𝑛 ] ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝜓 ) ) ) ) → ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝜓 ) ) ) |
23 |
22
|
ex |
⊢ ( 𝑛 ∈ 𝐷 → ( ∀ 𝑧 ∈ 𝐷 ( 𝑧 E 𝑛 → [ 𝑧 / 𝑛 ] ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝜓 ) ) ) → ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝜓 ) ) ) ) |
24 |
17 23
|
mprg |
⊢ ∀ 𝑛 ∈ 𝐷 ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝜓 ) ) |
25 |
|
r19.21v |
⊢ ( ∀ 𝑛 ∈ 𝐷 ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑛 ∈ 𝐷 ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝜓 ) ) ) |
26 |
24 25
|
mpbi |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑛 ∈ 𝐷 ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝜓 ) ) |
27 |
10 26
|
syl |
⊢ ( ( 𝑥 = 𝑋 ∧ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ∀ 𝑛 ∈ 𝐷 ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝜓 ) ) |
28 |
|
bnj602 |
⊢ ( 𝑥 = 𝑋 → pred ( 𝑥 , 𝐴 , 𝑅 ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
29 |
28
|
eqeq2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) ) |
30 |
29 1
|
bitr4di |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ↔ 𝜑 ) ) |
31 |
30
|
3anbi2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝜓 ) ↔ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
32 |
31
|
eubidv |
⊢ ( 𝑥 = 𝑋 → ( ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝜓 ) ↔ ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
33 |
32
|
ralbidv |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑛 ∈ 𝐷 ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝜓 ) ↔ ∀ 𝑛 ∈ 𝐷 ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝑥 = 𝑋 ∧ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ( ∀ 𝑛 ∈ 𝐷 ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝜓 ) ↔ ∀ 𝑛 ∈ 𝐷 ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
35 |
27 34
|
mpbid |
⊢ ( ( 𝑥 = 𝑋 ∧ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ∀ 𝑛 ∈ 𝐷 ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
36 |
7 35
|
bnj593 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∃ 𝑥 ∀ 𝑛 ∈ 𝐷 ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
37 |
36
|
bnj937 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑛 ∈ 𝐷 ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |