Step |
Hyp |
Ref |
Expression |
1 |
|
bnj865.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj865.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
3 |
|
bnj865.3 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
4 |
|
bnj865.5 |
⊢ ( 𝜒 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) ) |
5 |
|
bnj865.6 |
⊢ ( 𝜃 ↔ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
6 |
1 2 3
|
bnj852 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑛 ∈ 𝐷 ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
7 |
|
omex |
⊢ ω ∈ V |
8 |
|
difexg |
⊢ ( ω ∈ V → ( ω ∖ { ∅ } ) ∈ V ) |
9 |
7 8
|
ax-mp |
⊢ ( ω ∖ { ∅ } ) ∈ V |
10 |
3 9
|
eqeltri |
⊢ 𝐷 ∈ V |
11 |
|
raleq |
⊢ ( 𝑧 = 𝐷 → ( ∀ 𝑛 ∈ 𝑧 ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ↔ ∀ 𝑛 ∈ 𝐷 ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
12 |
|
raleq |
⊢ ( 𝑧 = 𝐷 → ( ∀ 𝑛 ∈ 𝑧 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ↔ ∀ 𝑛 ∈ 𝐷 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
13 |
12
|
exbidv |
⊢ ( 𝑧 = 𝐷 → ( ∃ 𝑤 ∀ 𝑛 ∈ 𝑧 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑤 ∀ 𝑛 ∈ 𝐷 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
14 |
11 13
|
imbi12d |
⊢ ( 𝑧 = 𝐷 → ( ( ∀ 𝑛 ∈ 𝑧 ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) → ∃ 𝑤 ∀ 𝑛 ∈ 𝑧 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ( ∀ 𝑛 ∈ 𝐷 ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) → ∃ 𝑤 ∀ 𝑛 ∈ 𝐷 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) ) |
15 |
|
zfrep6 |
⊢ ( ∀ 𝑛 ∈ 𝑧 ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) → ∃ 𝑤 ∀ 𝑛 ∈ 𝑧 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
16 |
10 14 15
|
vtocl |
⊢ ( ∀ 𝑛 ∈ 𝐷 ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) → ∃ 𝑤 ∀ 𝑛 ∈ 𝐷 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
17 |
6 16
|
syl |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∃ 𝑤 ∀ 𝑛 ∈ 𝐷 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
18 |
|
19.37v |
⊢ ( ∃ 𝑤 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑛 ∈ 𝐷 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∃ 𝑤 ∀ 𝑛 ∈ 𝐷 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
19 |
17 18
|
mpbir |
⊢ ∃ 𝑤 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑛 ∈ 𝐷 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
20 |
|
df-ral |
⊢ ( ∀ 𝑛 ∈ 𝐷 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ↔ ∀ 𝑛 ( 𝑛 ∈ 𝐷 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
21 |
20
|
imbi2i |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑛 ∈ 𝐷 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑛 ( 𝑛 ∈ 𝐷 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) ) |
22 |
|
19.21v |
⊢ ( ∀ 𝑛 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑛 ∈ 𝐷 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑛 ( 𝑛 ∈ 𝐷 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) ) |
23 |
21 22
|
bitr4i |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑛 ∈ 𝐷 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ∀ 𝑛 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑛 ∈ 𝐷 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) ) |
24 |
23
|
exbii |
⊢ ( ∃ 𝑤 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑛 ∈ 𝐷 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ∃ 𝑤 ∀ 𝑛 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑛 ∈ 𝐷 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) ) |
25 |
|
impexp |
⊢ ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑛 ∈ 𝐷 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) ) |
26 |
|
df-3an |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐷 ) ) |
27 |
26
|
bicomi |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐷 ) ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) ) |
28 |
27
|
imbi1i |
⊢ ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
29 |
25 28
|
bitr3i |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑛 ∈ 𝐷 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
30 |
29
|
albii |
⊢ ( ∀ 𝑛 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑛 ∈ 𝐷 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) ↔ ∀ 𝑛 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
31 |
30
|
exbii |
⊢ ( ∃ 𝑤 ∀ 𝑛 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑛 ∈ 𝐷 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) ↔ ∃ 𝑤 ∀ 𝑛 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
32 |
24 31
|
bitri |
⊢ ( ∃ 𝑤 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑛 ∈ 𝐷 ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ∃ 𝑤 ∀ 𝑛 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
33 |
19 32
|
mpbi |
⊢ ∃ 𝑤 ∀ 𝑛 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
34 |
4
|
bicomi |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) ↔ 𝜒 ) |
35 |
34
|
imbi1i |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ( 𝜒 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
36 |
35
|
albii |
⊢ ( ∀ 𝑛 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ∀ 𝑛 ( 𝜒 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
37 |
36
|
exbii |
⊢ ( ∃ 𝑤 ∀ 𝑛 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ∃ 𝑤 ∀ 𝑛 ( 𝜒 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
38 |
33 37
|
mpbi |
⊢ ∃ 𝑤 ∀ 𝑛 ( 𝜒 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
39 |
5
|
rexbii |
⊢ ( ∃ 𝑓 ∈ 𝑤 𝜃 ↔ ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
40 |
39
|
imbi2i |
⊢ ( ( 𝜒 → ∃ 𝑓 ∈ 𝑤 𝜃 ) ↔ ( 𝜒 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
41 |
40
|
albii |
⊢ ( ∀ 𝑛 ( 𝜒 → ∃ 𝑓 ∈ 𝑤 𝜃 ) ↔ ∀ 𝑛 ( 𝜒 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
42 |
41
|
exbii |
⊢ ( ∃ 𝑤 ∀ 𝑛 ( 𝜒 → ∃ 𝑓 ∈ 𝑤 𝜃 ) ↔ ∃ 𝑤 ∀ 𝑛 ( 𝜒 → ∃ 𝑓 ∈ 𝑤 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
43 |
38 42
|
mpbir |
⊢ ∃ 𝑤 ∀ 𝑛 ( 𝜒 → ∃ 𝑓 ∈ 𝑤 𝜃 ) |