Metamath Proof Explorer


Theorem bnj873

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj873.4 𝐵 = { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
bnj873.7 ( 𝜑′[ 𝑔 / 𝑓 ] 𝜑 )
bnj873.8 ( 𝜓′[ 𝑔 / 𝑓 ] 𝜓 )
Assertion bnj873 𝐵 = { 𝑔 ∣ ∃ 𝑛𝐷 ( 𝑔 Fn 𝑛𝜑′𝜓′ ) }

Proof

Step Hyp Ref Expression
1 bnj873.4 𝐵 = { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
2 bnj873.7 ( 𝜑′[ 𝑔 / 𝑓 ] 𝜑 )
3 bnj873.8 ( 𝜓′[ 𝑔 / 𝑓 ] 𝜓 )
4 nfv 𝑔𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 )
5 nfcv 𝑓 𝐷
6 nfv 𝑓 𝑔 Fn 𝑛
7 nfsbc1v 𝑓 [ 𝑔 / 𝑓 ] 𝜑
8 2 7 nfxfr 𝑓 𝜑′
9 nfsbc1v 𝑓 [ 𝑔 / 𝑓 ] 𝜓
10 3 9 nfxfr 𝑓 𝜓′
11 6 8 10 nf3an 𝑓 ( 𝑔 Fn 𝑛𝜑′𝜓′ )
12 5 11 nfrex 𝑓𝑛𝐷 ( 𝑔 Fn 𝑛𝜑′𝜓′ )
13 fneq1 ( 𝑓 = 𝑔 → ( 𝑓 Fn 𝑛𝑔 Fn 𝑛 ) )
14 sbceq1a ( 𝑓 = 𝑔 → ( 𝜑[ 𝑔 / 𝑓 ] 𝜑 ) )
15 14 2 bitr4di ( 𝑓 = 𝑔 → ( 𝜑𝜑′ ) )
16 sbceq1a ( 𝑓 = 𝑔 → ( 𝜓[ 𝑔 / 𝑓 ] 𝜓 ) )
17 16 3 bitr4di ( 𝑓 = 𝑔 → ( 𝜓𝜓′ ) )
18 13 15 17 3anbi123d ( 𝑓 = 𝑔 → ( ( 𝑓 Fn 𝑛𝜑𝜓 ) ↔ ( 𝑔 Fn 𝑛𝜑′𝜓′ ) ) )
19 18 rexbidv ( 𝑓 = 𝑔 → ( ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) ↔ ∃ 𝑛𝐷 ( 𝑔 Fn 𝑛𝜑′𝜓′ ) ) )
20 4 12 19 cbvabw { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) } = { 𝑔 ∣ ∃ 𝑛𝐷 ( 𝑔 Fn 𝑛𝜑′𝜓′ ) }
21 1 20 eqtri 𝐵 = { 𝑔 ∣ ∃ 𝑛𝐷 ( 𝑔 Fn 𝑛𝜑′𝜓′ ) }