Step |
Hyp |
Ref |
Expression |
1 |
|
bnj873.4 |
⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) } |
2 |
|
bnj873.7 |
⊢ ( 𝜑′ ↔ [ 𝑔 / 𝑓 ] 𝜑 ) |
3 |
|
bnj873.8 |
⊢ ( 𝜓′ ↔ [ 𝑔 / 𝑓 ] 𝜓 ) |
4 |
|
nfv |
⊢ Ⅎ 𝑔 ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) |
5 |
|
nfcv |
⊢ Ⅎ 𝑓 𝐷 |
6 |
|
nfv |
⊢ Ⅎ 𝑓 𝑔 Fn 𝑛 |
7 |
|
nfsbc1v |
⊢ Ⅎ 𝑓 [ 𝑔 / 𝑓 ] 𝜑 |
8 |
2 7
|
nfxfr |
⊢ Ⅎ 𝑓 𝜑′ |
9 |
|
nfsbc1v |
⊢ Ⅎ 𝑓 [ 𝑔 / 𝑓 ] 𝜓 |
10 |
3 9
|
nfxfr |
⊢ Ⅎ 𝑓 𝜓′ |
11 |
6 8 10
|
nf3an |
⊢ Ⅎ 𝑓 ( 𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′ ) |
12 |
5 11
|
nfrex |
⊢ Ⅎ 𝑓 ∃ 𝑛 ∈ 𝐷 ( 𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′ ) |
13 |
|
fneq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 Fn 𝑛 ↔ 𝑔 Fn 𝑛 ) ) |
14 |
|
sbceq1a |
⊢ ( 𝑓 = 𝑔 → ( 𝜑 ↔ [ 𝑔 / 𝑓 ] 𝜑 ) ) |
15 |
14 2
|
bitr4di |
⊢ ( 𝑓 = 𝑔 → ( 𝜑 ↔ 𝜑′ ) ) |
16 |
|
sbceq1a |
⊢ ( 𝑓 = 𝑔 → ( 𝜓 ↔ [ 𝑔 / 𝑓 ] 𝜓 ) ) |
17 |
16 3
|
bitr4di |
⊢ ( 𝑓 = 𝑔 → ( 𝜓 ↔ 𝜓′ ) ) |
18 |
13 15 17
|
3anbi123d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ↔ ( 𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′ ) ) ) |
19 |
18
|
rexbidv |
⊢ ( 𝑓 = 𝑔 → ( ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑛 ∈ 𝐷 ( 𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′ ) ) ) |
20 |
4 12 19
|
cbvabw |
⊢ { 𝑓 ∣ ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) } = { 𝑔 ∣ ∃ 𝑛 ∈ 𝐷 ( 𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′ ) } |
21 |
1 20
|
eqtri |
⊢ 𝐵 = { 𝑔 ∣ ∃ 𝑛 ∈ 𝐷 ( 𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′ ) } |