| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bnj882.1 | ⊢ ( 𝜑  ↔  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 ) ) | 
						
							| 2 |  | bnj882.2 | ⊢ ( 𝜓  ↔  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) | 
						
							| 3 |  | bnj882.3 | ⊢ 𝐷  =  ( ω  ∖  { ∅ } ) | 
						
							| 4 |  | bnj882.4 | ⊢ 𝐵  =  { 𝑓  ∣  ∃ 𝑛  ∈  𝐷 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) } | 
						
							| 5 |  | df-bnj18 | ⊢  trCl ( 𝑋 ,  𝐴 ,  𝑅 )  =  ∪  𝑓  ∈  { 𝑓  ∣  ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) } ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 ) | 
						
							| 6 |  | df-iun | ⊢ ∪  𝑓  ∈  𝐵 ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 )  =  { 𝑤  ∣  ∃ 𝑓  ∈  𝐵 𝑤  ∈  ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 ) } | 
						
							| 7 |  | df-iun | ⊢ ∪  𝑓  ∈  { 𝑓  ∣  ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) } ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 )  =  { 𝑤  ∣  ∃ 𝑓  ∈  { 𝑓  ∣  ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) } 𝑤  ∈  ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 ) } | 
						
							| 8 | 1 2 | anbi12i | ⊢ ( ( 𝜑  ∧  𝜓 )  ↔  ( ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) ) | 
						
							| 9 | 8 | anbi2i | ⊢ ( ( 𝑓  Fn  𝑛  ∧  ( 𝜑  ∧  𝜓 ) )  ↔  ( 𝑓  Fn  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) ) ) | 
						
							| 10 |  | 3anass | ⊢ ( ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 )  ↔  ( 𝑓  Fn  𝑛  ∧  ( 𝜑  ∧  𝜓 ) ) ) | 
						
							| 11 |  | 3anass | ⊢ ( ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  ↔  ( 𝑓  Fn  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) ) ) | 
						
							| 12 | 9 10 11 | 3bitr4i | ⊢ ( ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 )  ↔  ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) ) | 
						
							| 13 | 3 12 | rexeqbii | ⊢ ( ∃ 𝑛  ∈  𝐷 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 )  ↔  ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) ) | 
						
							| 14 | 13 | abbii | ⊢ { 𝑓  ∣  ∃ 𝑛  ∈  𝐷 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) }  =  { 𝑓  ∣  ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) } | 
						
							| 15 | 4 14 | eqtri | ⊢ 𝐵  =  { 𝑓  ∣  ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) } | 
						
							| 16 | 15 | eleq2i | ⊢ ( 𝑓  ∈  𝐵  ↔  𝑓  ∈  { 𝑓  ∣  ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) } ) | 
						
							| 17 | 16 | anbi1i | ⊢ ( ( 𝑓  ∈  𝐵  ∧  𝑤  ∈  ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 ) )  ↔  ( 𝑓  ∈  { 𝑓  ∣  ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) }  ∧  𝑤  ∈  ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 ) ) ) | 
						
							| 18 | 17 | rexbii2 | ⊢ ( ∃ 𝑓  ∈  𝐵 𝑤  ∈  ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 )  ↔  ∃ 𝑓  ∈  { 𝑓  ∣  ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) } 𝑤  ∈  ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 ) ) | 
						
							| 19 | 18 | abbii | ⊢ { 𝑤  ∣  ∃ 𝑓  ∈  𝐵 𝑤  ∈  ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 ) }  =  { 𝑤  ∣  ∃ 𝑓  ∈  { 𝑓  ∣  ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) } 𝑤  ∈  ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 ) } | 
						
							| 20 | 7 19 | eqtr4i | ⊢ ∪  𝑓  ∈  { 𝑓  ∣  ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) } ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 )  =  { 𝑤  ∣  ∃ 𝑓  ∈  𝐵 𝑤  ∈  ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 ) } | 
						
							| 21 | 6 20 | eqtr4i | ⊢ ∪  𝑓  ∈  𝐵 ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 )  =  ∪  𝑓  ∈  { 𝑓  ∣  ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) } ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 ) | 
						
							| 22 | 5 21 | eqtr4i | ⊢  trCl ( 𝑋 ,  𝐴 ,  𝑅 )  =  ∪  𝑓  ∈  𝐵 ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 ) |