Metamath Proof Explorer


Theorem bnj89

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj89.1 𝑍 ∈ V
Assertion bnj89 ( [ 𝑍 / 𝑦 ] ∃! 𝑥 𝜑 ↔ ∃! 𝑥 [ 𝑍 / 𝑦 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 bnj89.1 𝑍 ∈ V
2 sbcex2 ( [ 𝑍 / 𝑦 ]𝑤𝑥 ( 𝜑𝑥 = 𝑤 ) ↔ ∃ 𝑤 [ 𝑍 / 𝑦 ]𝑥 ( 𝜑𝑥 = 𝑤 ) )
3 sbcal ( [ 𝑍 / 𝑦 ]𝑥 ( 𝜑𝑥 = 𝑤 ) ↔ ∀ 𝑥 [ 𝑍 / 𝑦 ] ( 𝜑𝑥 = 𝑤 ) )
4 3 exbii ( ∃ 𝑤 [ 𝑍 / 𝑦 ]𝑥 ( 𝜑𝑥 = 𝑤 ) ↔ ∃ 𝑤𝑥 [ 𝑍 / 𝑦 ] ( 𝜑𝑥 = 𝑤 ) )
5 sbcbig ( 𝑍 ∈ V → ( [ 𝑍 / 𝑦 ] ( 𝜑𝑥 = 𝑤 ) ↔ ( [ 𝑍 / 𝑦 ] 𝜑[ 𝑍 / 𝑦 ] 𝑥 = 𝑤 ) ) )
6 1 5 ax-mp ( [ 𝑍 / 𝑦 ] ( 𝜑𝑥 = 𝑤 ) ↔ ( [ 𝑍 / 𝑦 ] 𝜑[ 𝑍 / 𝑦 ] 𝑥 = 𝑤 ) )
7 sbcg ( 𝑍 ∈ V → ( [ 𝑍 / 𝑦 ] 𝑥 = 𝑤𝑥 = 𝑤 ) )
8 1 7 ax-mp ( [ 𝑍 / 𝑦 ] 𝑥 = 𝑤𝑥 = 𝑤 )
9 8 bibi2i ( ( [ 𝑍 / 𝑦 ] 𝜑[ 𝑍 / 𝑦 ] 𝑥 = 𝑤 ) ↔ ( [ 𝑍 / 𝑦 ] 𝜑𝑥 = 𝑤 ) )
10 6 9 bitri ( [ 𝑍 / 𝑦 ] ( 𝜑𝑥 = 𝑤 ) ↔ ( [ 𝑍 / 𝑦 ] 𝜑𝑥 = 𝑤 ) )
11 10 albii ( ∀ 𝑥 [ 𝑍 / 𝑦 ] ( 𝜑𝑥 = 𝑤 ) ↔ ∀ 𝑥 ( [ 𝑍 / 𝑦 ] 𝜑𝑥 = 𝑤 ) )
12 11 exbii ( ∃ 𝑤𝑥 [ 𝑍 / 𝑦 ] ( 𝜑𝑥 = 𝑤 ) ↔ ∃ 𝑤𝑥 ( [ 𝑍 / 𝑦 ] 𝜑𝑥 = 𝑤 ) )
13 2 4 12 3bitri ( [ 𝑍 / 𝑦 ]𝑤𝑥 ( 𝜑𝑥 = 𝑤 ) ↔ ∃ 𝑤𝑥 ( [ 𝑍 / 𝑦 ] 𝜑𝑥 = 𝑤 ) )
14 eu6 ( ∃! 𝑥 𝜑 ↔ ∃ 𝑤𝑥 ( 𝜑𝑥 = 𝑤 ) )
15 14 sbcbii ( [ 𝑍 / 𝑦 ] ∃! 𝑥 𝜑[ 𝑍 / 𝑦 ]𝑤𝑥 ( 𝜑𝑥 = 𝑤 ) )
16 eu6 ( ∃! 𝑥 [ 𝑍 / 𝑦 ] 𝜑 ↔ ∃ 𝑤𝑥 ( [ 𝑍 / 𝑦 ] 𝜑𝑥 = 𝑤 ) )
17 13 15 16 3bitr4i ( [ 𝑍 / 𝑦 ] ∃! 𝑥 𝜑 ↔ ∃! 𝑥 [ 𝑍 / 𝑦 ] 𝜑 )